Biegespannung in der Faser des gebogenen Balkens bei gegebenem Radius der Schwerachse Lösung

SCHRITT 0: Zusammenfassung vor der Berechnung
Gebrauchte Formel
Biegespannung = ((Biegemoment im gebogenen Träger*Abstand von der neutralen Achse des gebogenen Trägers)/(Querschnittsfläche des gebogenen Trägers*(Radius der Schwerachse-Radius der neutralen Achse)*(Radius der neutralen Achse-Abstand von der neutralen Achse des gebogenen Trägers)))
σb = ((Mb*y)/(A*(R-RN)*(RN-y)))
Diese formel verwendet 6 Variablen
Verwendete Variablen
Biegespannung - (Gemessen in Paskal) - Die Biegespannung oder zulässige Biegespannung ist die Menge an Biegespannung, die in einem Material vor seinem Versagen oder Bruch erzeugt werden kann.
Biegemoment im gebogenen Träger - (Gemessen in Newtonmeter) - Das Biegemoment in gebogenen Trägern ist die Reaktion, die in einem Strukturelement induziert wird, wenn eine externe Kraft oder ein externes Moment auf das Element ausgeübt wird, wodurch sich das Element biegt.
Abstand von der neutralen Achse des gebogenen Trägers - (Gemessen in Meter) - Der Abstand von der neutralen Achse des gebogenen Trägers ist definiert als der Abstand von einer Achse im Querschnitt eines gebogenen Trägers, entlang der es keine Längsspannungen oder Dehnungen gibt.
Querschnittsfläche des gebogenen Trägers - (Gemessen in Quadratmeter) - Die Querschnittsfläche eines gekrümmten Strahls ist die Fläche eines zweidimensionalen Schnitts, der erhalten wird, wenn ein Strahl senkrecht zu einer bestimmten Achse an einem Punkt geschnitten wird.
Radius der Schwerachse - (Gemessen in Meter) - Radius der Schwerpunktachse ist der Radius der Achse des gekrümmten Strahls, der durch den Schwerpunktpunkt verläuft.
Radius der neutralen Achse - (Gemessen in Meter) - Der Radius der neutralen Achse ist der Radius der Achse des gekrümmten Balkens, der durch die Punkte verläuft, die keine Spannung auf ihnen haben.
SCHRITT 1: Konvertieren Sie die Eingänge in die Basiseinheit
Biegemoment im gebogenen Träger: 985000 Newton Millimeter --> 985 Newtonmeter (Überprüfen sie die konvertierung hier)
Abstand von der neutralen Achse des gebogenen Trägers: 21 Millimeter --> 0.021 Meter (Überprüfen sie die konvertierung hier)
Querschnittsfläche des gebogenen Trägers: 240 Quadratmillimeter --> 0.00024 Quadratmeter (Überprüfen sie die konvertierung hier)
Radius der Schwerachse: 80 Millimeter --> 0.08 Meter (Überprüfen sie die konvertierung hier)
Radius der neutralen Achse: 78 Millimeter --> 0.078 Meter (Überprüfen sie die konvertierung hier)
SCHRITT 2: Formel auswerten
Eingabewerte in Formel ersetzen
σb = ((Mb*y)/(A*(R-RN)*(RN-y))) --> ((985*0.021)/(0.00024*(0.08-0.078)*(0.078-0.021)))
Auswerten ... ...
σb = 756030701.754385
SCHRITT 3: Konvertieren Sie das Ergebnis in die Ausgabeeinheit
756030701.754385 Paskal -->756.030701754385 Newton pro Quadratmillimeter (Überprüfen sie die konvertierung hier)
ENDGÜLTIGE ANTWORT
756.030701754385 756.0307 Newton pro Quadratmillimeter <-- Biegespannung
(Berechnung in 00.020 sekunden abgeschlossen)

Credits

Erstellt von Saurabh Patil
Shri Govindram Seksaria Institut für Technologie und Wissenschaft (SGSITS), Indore
Saurabh Patil hat diesen Rechner und 700+ weitere Rechner erstellt!
Geprüft von Anshika Arya
Nationales Institut für Technologie (NIT), Hamirpur
Anshika Arya hat diesen Rechner und 2500+ weitere Rechner verifiziert!

20 Entwurf gebogener Träger Taschenrechner

Biegespannung in der Faser des gebogenen Balkens bei gegebenem Radius der Schwerachse
Gehen Biegespannung = ((Biegemoment im gebogenen Träger*Abstand von der neutralen Achse des gebogenen Trägers)/(Querschnittsfläche des gebogenen Trägers*(Radius der Schwerachse-Radius der neutralen Achse)*(Radius der neutralen Achse-Abstand von der neutralen Achse des gebogenen Trägers)))
Biegemoment an der Faser des gebogenen Trägers bei gegebener Biegespannung und Radius der Schwerachse
Gehen Biegemoment im gebogenen Träger = (Biegespannung*(Querschnittsfläche des gebogenen Trägers*(Radius der Schwerachse-Radius der neutralen Achse)*(Radius der neutralen Achse-Abstand von der neutralen Achse des gebogenen Trägers)))/Abstand von der neutralen Achse des gebogenen Trägers
Biegespannung in der Faser des gebogenen Balkens bei Exzentrizität
Gehen Biegespannung = ((Biegemoment im gebogenen Träger*Abstand von der neutralen Achse des gebogenen Trägers)/(Querschnittsfläche des gebogenen Trägers*(Exzentrizität zwischen Schwer- und Neutralachse)*(Radius der neutralen Achse-Abstand von der neutralen Achse des gebogenen Trägers)))
Biegespannung in der Faser des gebogenen Trägers
Gehen Biegespannung = (Biegemoment im gebogenen Träger*Abstand von der neutralen Achse des gebogenen Trägers)/(Querschnittsfläche des gebogenen Trägers*(Exzentrizität zwischen Schwer- und Neutralachse)*(Radius der neutralen Achse-Abstand von der neutralen Achse des gebogenen Trägers))
Biegemoment an der Faser des gebogenen Trägers bei gegebener Biegespannung und Exzentrizität
Gehen Biegemoment im gebogenen Träger = (Biegespannung*(Querschnittsfläche des gebogenen Trägers*(Radius der Schwerachse-Radius der neutralen Achse)*(Exzentrizität zwischen Schwer- und Neutralachse)))/Abstand von der neutralen Achse des gebogenen Trägers
Exzentrizität zwischen Schwer- und Neutralachse des gebogenen Balkens bei Biegespannung an der inneren Faser
Gehen Exzentrizität zwischen Schwer- und Neutralachse = (Biegemoment im gebogenen Träger*Abstand der inneren Faser von der neutralen Achse)/((Querschnittsfläche des gebogenen Trägers)*Biegespannung an der inneren Faser*(Radius der inneren Faser))
Abstand der inneren Faser von der neutralen Achse des gebogenen Trägers bei Biegespannung an der Faser
Gehen Abstand der inneren Faser von der neutralen Achse = (Biegespannung an der inneren Faser*(Querschnittsfläche des gebogenen Trägers)*Exzentrizität zwischen Schwer- und Neutralachse*(Radius der inneren Faser))/(Biegemoment im gebogenen Träger)
Biegespannung an der inneren Faser des gebogenen Trägers bei gegebenem Biegemoment
Gehen Biegespannung an der inneren Faser = (Biegemoment im gebogenen Träger*Abstand der inneren Faser von der neutralen Achse)/((Querschnittsfläche des gebogenen Trägers)*Exzentrizität zwischen Schwer- und Neutralachse*(Radius der inneren Faser))
Querschnittsfläche des gebogenen Balkens bei Biegespannung an der inneren Faser
Gehen Querschnittsfläche des gebogenen Trägers = (Biegemoment im gebogenen Träger*Abstand der inneren Faser von der neutralen Achse)/((Exzentrizität zwischen Schwer- und Neutralachse)*Biegespannung an der inneren Faser*(Radius der inneren Faser))
Biegemoment im gebogenen Balken bei Biegespannung an der inneren Faser
Gehen Biegemoment im gebogenen Träger = (Biegespannung an der inneren Faser*(Querschnittsfläche des gebogenen Trägers)*Exzentrizität zwischen Schwer- und Neutralachse*(Radius der inneren Faser))/(Abstand der inneren Faser von der neutralen Achse)
Exzentrizität zwischen Schwer- und Neutralachse des gebogenen Balkens bei Biegespannung an der äußeren Faser
Gehen Exzentrizität zwischen Schwer- und Neutralachse = (Biegemoment im gebogenen Träger*Abstand der äußeren Faser von der neutralen Achse)/((Querschnittsfläche des gebogenen Trägers)*Biegespannung an der Außenfaser*(Radius der äußeren Faser))
Abstand der äußeren Faser von der neutralen Achse des gebogenen Balkens bei Biegespannung an der Faser
Gehen Abstand der äußeren Faser von der neutralen Achse = (Biegespannung an der Außenfaser*(Querschnittsfläche des gebogenen Trägers)*Exzentrizität zwischen Schwer- und Neutralachse*(Radius der äußeren Faser))/(Biegemoment im gebogenen Träger)
Biegespannung an der äußeren Faser des gebogenen Balkens bei gegebenem Biegemoment
Gehen Biegespannung an der Außenfaser = (Biegemoment im gebogenen Träger*Abstand der äußeren Faser von der neutralen Achse)/((Querschnittsfläche des gebogenen Trägers)*Exzentrizität zwischen Schwer- und Neutralachse*(Radius der äußeren Faser))
Querschnittsfläche des gebogenen Balkens bei Biegespannung an der äußeren Faser
Gehen Querschnittsfläche des gebogenen Trägers = (Biegemoment im gebogenen Träger*Abstand der äußeren Faser von der neutralen Achse)/((Exzentrizität zwischen Schwer- und Neutralachse)*Biegespannung an der Außenfaser*(Radius der äußeren Faser))
Biegemoment im gebogenen Balken bei Biegespannung an der äußeren Faser
Gehen Biegemoment im gebogenen Träger = (Biegespannung an der Außenfaser*(Querschnittsfläche des gebogenen Trägers)*Exzentrizität zwischen Schwer- und Neutralachse*(Radius der äußeren Faser))/(Abstand der äußeren Faser von der neutralen Achse)
Abstand der Faser von der neutralen Achse des rechteckig gekrümmten Strahls bei gegebenem inneren und äußeren Faserradius
Gehen Abstand von der neutralen Achse des gebogenen Trägers = (Radius der inneren Faser)*ln(Radius der äußeren Faser/Radius der inneren Faser)
Abstand der Faser von der neutralen Achse des rechteckig gekrümmten Strahls bei gegebenem Radius der Schwerachse
Gehen Abstand von der neutralen Achse des gebogenen Trägers = 2*(Radius der Schwerachse-Radius der inneren Faser)
Exzentrizität zwischen Schwer- und Neutralachse des gebogenen Trägers bei gegebenem Radius beider Achsen
Gehen Exzentrizität zwischen Schwer- und Neutralachse = Radius der Schwerachse-Radius der neutralen Achse
Durchmesser des kreisförmig gekrümmten Strahls bei gegebenem Radius der Schwerachse
Gehen Durchmesser des kreisförmig gebogenen Balkens = 2*(Radius der Schwerachse-Radius der inneren Faser)
Exzentrizität zwischen Mittel- und Neutralachse des gebogenen Balkens
Gehen Exzentrizität zwischen Schwer- und Neutralachse = Radius der Schwerachse-Radius der neutralen Achse

Biegespannung in der Faser des gebogenen Balkens bei gegebenem Radius der Schwerachse Formel

Biegespannung = ((Biegemoment im gebogenen Träger*Abstand von der neutralen Achse des gebogenen Trägers)/(Querschnittsfläche des gebogenen Trägers*(Radius der Schwerachse-Radius der neutralen Achse)*(Radius der neutralen Achse-Abstand von der neutralen Achse des gebogenen Trägers)))
σb = ((Mb*y)/(A*(R-RN)*(RN-y)))
Let Others Know
Facebook
Twitter
Reddit
LinkedIn
Email
WhatsApp
Copied!