Exzentrizität zwischen Mittel- und Neutralachse des gebogenen Balkens Lösung

SCHRITT 0: Zusammenfassung vor der Berechnung
Gebrauchte Formel
Exzentrizität zwischen Schwer- und Neutralachse = Radius der Schwerachse-Radius der neutralen Achse
e = R-RN
Diese formel verwendet 3 Variablen
Verwendete Variablen
Exzentrizität zwischen Schwer- und Neutralachse - (Gemessen in Meter) - Die Exzentrizität zwischen Schwerpunkt und neutraler Achse ist der Abstand zwischen dem Schwerpunkt und der neutralen Achse eines gekrümmten Strukturelements.
Radius der Schwerachse - (Gemessen in Meter) - Radius der Schwerpunktachse ist der Radius der Achse des gekrümmten Strahls, der durch den Schwerpunktpunkt verläuft.
Radius der neutralen Achse - (Gemessen in Meter) - Der Radius der neutralen Achse ist der Radius der Achse des gekrümmten Balkens, der durch die Punkte verläuft, die keine Spannung auf ihnen haben.
SCHRITT 1: Konvertieren Sie die Eingänge in die Basiseinheit
Radius der Schwerachse: 80 Millimeter --> 0.08 Meter (Überprüfen sie die konvertierung hier)
Radius der neutralen Achse: 78 Millimeter --> 0.078 Meter (Überprüfen sie die konvertierung hier)
SCHRITT 2: Formel auswerten
Eingabewerte in Formel ersetzen
e = R-RN --> 0.08-0.078
Auswerten ... ...
e = 0.002
SCHRITT 3: Konvertieren Sie das Ergebnis in die Ausgabeeinheit
0.002 Meter -->2 Millimeter (Überprüfen sie die konvertierung hier)
ENDGÜLTIGE ANTWORT
2 Millimeter <-- Exzentrizität zwischen Schwer- und Neutralachse
(Berechnung in 00.004 sekunden abgeschlossen)

Credits

Erstellt von Nishan Poojary
Shri Madhwa Vadiraja Institut für Technologie und Management (SMVITM), Udupi
Nishan Poojary hat diesen Rechner und 500+ weitere Rechner erstellt!
Geprüft von Vaibhav Malani
Nationales Institut für Technologie (NIT), Tiruchirapalli
Vaibhav Malani hat diesen Rechner und 200+ weitere Rechner verifiziert!

20 Entwurf gebogener Träger Taschenrechner

Biegespannung in der Faser des gebogenen Balkens bei gegebenem Radius der Schwerachse
Gehen Biegespannung = ((Biegemoment im gebogenen Träger*Abstand von der neutralen Achse des gebogenen Trägers)/(Querschnittsfläche des gebogenen Trägers*(Radius der Schwerachse-Radius der neutralen Achse)*(Radius der neutralen Achse-Abstand von der neutralen Achse des gebogenen Trägers)))
Biegemoment an der Faser des gebogenen Trägers bei gegebener Biegespannung und Radius der Schwerachse
Gehen Biegemoment im gebogenen Träger = (Biegespannung*(Querschnittsfläche des gebogenen Trägers*(Radius der Schwerachse-Radius der neutralen Achse)*(Radius der neutralen Achse-Abstand von der neutralen Achse des gebogenen Trägers)))/Abstand von der neutralen Achse des gebogenen Trägers
Biegespannung in der Faser des gebogenen Balkens bei Exzentrizität
Gehen Biegespannung = ((Biegemoment im gebogenen Träger*Abstand von der neutralen Achse des gebogenen Trägers)/(Querschnittsfläche des gebogenen Trägers*(Exzentrizität zwischen Schwer- und Neutralachse)*(Radius der neutralen Achse-Abstand von der neutralen Achse des gebogenen Trägers)))
Biegespannung in der Faser des gebogenen Trägers
Gehen Biegespannung = (Biegemoment im gebogenen Träger*Abstand von der neutralen Achse des gebogenen Trägers)/(Querschnittsfläche des gebogenen Trägers*(Exzentrizität zwischen Schwer- und Neutralachse)*(Radius der neutralen Achse-Abstand von der neutralen Achse des gebogenen Trägers))
Biegemoment an der Faser des gebogenen Trägers bei gegebener Biegespannung und Exzentrizität
Gehen Biegemoment im gebogenen Träger = (Biegespannung*(Querschnittsfläche des gebogenen Trägers*(Radius der Schwerachse-Radius der neutralen Achse)*(Exzentrizität zwischen Schwer- und Neutralachse)))/Abstand von der neutralen Achse des gebogenen Trägers
Exzentrizität zwischen Schwer- und Neutralachse des gebogenen Balkens bei Biegespannung an der inneren Faser
Gehen Exzentrizität zwischen Schwer- und Neutralachse = (Biegemoment im gebogenen Träger*Abstand der inneren Faser von der neutralen Achse)/((Querschnittsfläche des gebogenen Trägers)*Biegespannung an der inneren Faser*(Radius der inneren Faser))
Abstand der inneren Faser von der neutralen Achse des gebogenen Trägers bei Biegespannung an der Faser
Gehen Abstand der inneren Faser von der neutralen Achse = (Biegespannung an der inneren Faser*(Querschnittsfläche des gebogenen Trägers)*Exzentrizität zwischen Schwer- und Neutralachse*(Radius der inneren Faser))/(Biegemoment im gebogenen Träger)
Biegespannung an der inneren Faser des gebogenen Trägers bei gegebenem Biegemoment
Gehen Biegespannung an der inneren Faser = (Biegemoment im gebogenen Träger*Abstand der inneren Faser von der neutralen Achse)/((Querschnittsfläche des gebogenen Trägers)*Exzentrizität zwischen Schwer- und Neutralachse*(Radius der inneren Faser))
Querschnittsfläche des gebogenen Balkens bei Biegespannung an der inneren Faser
Gehen Querschnittsfläche des gebogenen Trägers = (Biegemoment im gebogenen Träger*Abstand der inneren Faser von der neutralen Achse)/((Exzentrizität zwischen Schwer- und Neutralachse)*Biegespannung an der inneren Faser*(Radius der inneren Faser))
Biegemoment im gebogenen Balken bei Biegespannung an der inneren Faser
Gehen Biegemoment im gebogenen Träger = (Biegespannung an der inneren Faser*(Querschnittsfläche des gebogenen Trägers)*Exzentrizität zwischen Schwer- und Neutralachse*(Radius der inneren Faser))/(Abstand der inneren Faser von der neutralen Achse)
Exzentrizität zwischen Schwer- und Neutralachse des gebogenen Balkens bei Biegespannung an der äußeren Faser
Gehen Exzentrizität zwischen Schwer- und Neutralachse = (Biegemoment im gebogenen Träger*Abstand der äußeren Faser von der neutralen Achse)/((Querschnittsfläche des gebogenen Trägers)*Biegespannung an der Außenfaser*(Radius der äußeren Faser))
Abstand der äußeren Faser von der neutralen Achse des gebogenen Balkens bei Biegespannung an der Faser
Gehen Abstand der äußeren Faser von der neutralen Achse = (Biegespannung an der Außenfaser*(Querschnittsfläche des gebogenen Trägers)*Exzentrizität zwischen Schwer- und Neutralachse*(Radius der äußeren Faser))/(Biegemoment im gebogenen Träger)
Biegespannung an der äußeren Faser des gebogenen Balkens bei gegebenem Biegemoment
Gehen Biegespannung an der Außenfaser = (Biegemoment im gebogenen Träger*Abstand der äußeren Faser von der neutralen Achse)/((Querschnittsfläche des gebogenen Trägers)*Exzentrizität zwischen Schwer- und Neutralachse*(Radius der äußeren Faser))
Querschnittsfläche des gebogenen Balkens bei Biegespannung an der äußeren Faser
Gehen Querschnittsfläche des gebogenen Trägers = (Biegemoment im gebogenen Träger*Abstand der äußeren Faser von der neutralen Achse)/((Exzentrizität zwischen Schwer- und Neutralachse)*Biegespannung an der Außenfaser*(Radius der äußeren Faser))
Biegemoment im gebogenen Balken bei Biegespannung an der äußeren Faser
Gehen Biegemoment im gebogenen Träger = (Biegespannung an der Außenfaser*(Querschnittsfläche des gebogenen Trägers)*Exzentrizität zwischen Schwer- und Neutralachse*(Radius der äußeren Faser))/(Abstand der äußeren Faser von der neutralen Achse)
Abstand der Faser von der neutralen Achse des rechteckig gekrümmten Strahls bei gegebenem inneren und äußeren Faserradius
Gehen Abstand von der neutralen Achse des gebogenen Trägers = (Radius der inneren Faser)*ln(Radius der äußeren Faser/Radius der inneren Faser)
Abstand der Faser von der neutralen Achse des rechteckig gekrümmten Strahls bei gegebenem Radius der Schwerachse
Gehen Abstand von der neutralen Achse des gebogenen Trägers = 2*(Radius der Schwerachse-Radius der inneren Faser)
Exzentrizität zwischen Schwer- und Neutralachse des gebogenen Trägers bei gegebenem Radius beider Achsen
Gehen Exzentrizität zwischen Schwer- und Neutralachse = Radius der Schwerachse-Radius der neutralen Achse
Durchmesser des kreisförmig gekrümmten Strahls bei gegebenem Radius der Schwerachse
Gehen Durchmesser des kreisförmig gebogenen Balkens = 2*(Radius der Schwerachse-Radius der inneren Faser)
Exzentrizität zwischen Mittel- und Neutralachse des gebogenen Balkens
Gehen Exzentrizität zwischen Schwer- und Neutralachse = Radius der Schwerachse-Radius der neutralen Achse

Exzentrizität zwischen Mittel- und Neutralachse des gebogenen Balkens Formel

Exzentrizität zwischen Schwer- und Neutralachse = Radius der Schwerachse-Radius der neutralen Achse
e = R-RN

Was ist Exzentrizität?

Ein Kreis hat eine Exzentrizität von Null, daher zeigt Ihnen die Exzentrizität, wie "unkreisförmig" die Kurve ist. Größere Exzentrizitäten sind weniger gekrümmt. Bei Exzentrizität = 0 erhalten wir einen Kreis für 0 1 erhalten wir eine Hyperbel für unendliche Exzentrizität erhalten wir eine Linie.

Let Others Know
Facebook
Twitter
Reddit
LinkedIn
Email
WhatsApp
Copied!