Wärmefluss im voll entwickelten Siedezustand für Drücke bis zu 0,7 Megapascal Lösung

SCHRITT 0: Zusammenfassung vor der Berechnung
Gebrauchte Formel
Wärmeübertragungsrate = 2.253*Bereich*((Übertemperatur)^(3.96))
qrate = 2.253*A*((ΔTx)^(3.96))
Diese formel verwendet 3 Variablen
Verwendete Variablen
Wärmeübertragungsrate - (Gemessen in Joule pro Sekunde) - Die Wärmeübertragungsrate ist definiert als die pro Zeiteinheit im Material übertragene Wärmemenge.
Bereich - (Gemessen in Quadratmeter) - Die Fläche ist die Menge an zweidimensionalem Raum, die ein Objekt einnimmt.
Übertemperatur - (Gemessen in Kelvin) - Unter Übertemperatur versteht man den Temperaturunterschied zwischen der Wärmequelle und der Sättigungstemperatur des Fluids.
SCHRITT 1: Konvertieren Sie die Eingänge in die Basiseinheit
Bereich: 5 Quadratmeter --> 5 Quadratmeter Keine Konvertierung erforderlich
Übertemperatur: 2.25 Grad Celsius --> 2.25 Kelvin (Überprüfen sie die konvertierung hier)
SCHRITT 2: Formel auswerten
Eingabewerte in Formel ersetzen
qrate = 2.253*A*((ΔTx)^(3.96)) --> 2.253*5*((2.25)^(3.96))
Auswerten ... ...
qrate = 279.494951578441
SCHRITT 3: Konvertieren Sie das Ergebnis in die Ausgabeeinheit
279.494951578441 Joule pro Sekunde -->279.494951578441 Watt (Überprüfen sie die konvertierung hier)
ENDGÜLTIGE ANTWORT
279.494951578441 279.495 Watt <-- Wärmeübertragungsrate
(Berechnung in 00.004 sekunden abgeschlossen)

Credits

Erstellt von Ayush gupta
Universitätsschule für chemische Technologie-USCT (GGSIPU), Neu-Delhi
Ayush gupta hat diesen Rechner und 300+ weitere Rechner erstellt!
Geprüft von Prerana Bakli
Universität von Hawaii in Mānoa (Äh, Manoa), Hawaii, USA
Prerana Bakli hat diesen Rechner und 1600+ weitere Rechner verifiziert!

16 Wichtige Formeln für Kondensationszahl, durchschnittlichen Wärmeübergangskoeffizienten und Wärmefluss Taschenrechner

Durchschnittlicher Wärmeübertragungskoeffizient für Kondensation in horizontalen Rohren bei niedriger Dampfgeschwindigkeit
Gehen Durchschnittlicher Wärmeübertragungskoeffizient = 0.555*((Dichte des Flüssigkeitsfilms* (Dichte des Flüssigkeitsfilms-Dichte des Dampfes)*[g]*Latente Verdampfungswärme korrigiert* (Wärmeleitfähigkeit von Filmkondensat^3))/(Länge der Platte*Durchmesser des Rohrs* (Sättigungstemperatur-Plattenoberflächentemperatur)))^(0.25)
Durchschnittlicher Wärmeübertragungskoeffizient für laminare Filmkondensation an der Außenseite der Kugel
Gehen Durchschnittlicher Wärmeübertragungskoeffizient = 0.815*((Dichte des Flüssigkeitsfilms* (Dichte des Flüssigkeitsfilms-Dichte des Dampfes)*[g]*Latente Verdampfungswärme* (Wärmeleitfähigkeit von Filmkondensat^3))/(Durchmesser der Kugel*Viskosität des Films* (Sättigungstemperatur-Plattenoberflächentemperatur)))^(0.25)
Durchschnittlicher Wärmeübertragungskoeffizient für laminare Filmkondensation von Rohren
Gehen Durchschnittlicher Wärmeübertragungskoeffizient = 0.725*((Dichte des Flüssigkeitsfilms* (Dichte des Flüssigkeitsfilms-Dichte des Dampfes)*[g]*Latente Verdampfungswärme* (Wärmeleitfähigkeit von Filmkondensat^3))/(Durchmesser des Rohrs*Viskosität des Films* (Sättigungstemperatur-Plattenoberflächentemperatur)))^(0.25)
Durchschnittlicher Wärmeübertragungskoeffizient für die Dampfkondensation auf der Platte
Gehen Durchschnittlicher Wärmeübertragungskoeffizient = 0.943*((Dichte des Flüssigkeitsfilms* (Dichte des Flüssigkeitsfilms-Dichte des Dampfes)*[g]*Latente Verdampfungswärme* (Wärmeleitfähigkeit von Filmkondensat^3))/(Länge der Platte*Viskosität des Films* (Sättigungstemperatur-Plattenoberflächentemperatur)))^(0.25)
Durchschnittlicher Wärmeübertragungskoeffizient für Filmkondensation auf der Platte für wellenförmige laminare Strömung
Gehen Durchschnittlicher Wärmeübertragungskoeffizient = 1.13*((Dichte des Flüssigkeitsfilms* (Dichte des Flüssigkeitsfilms-Dichte des Dampfes)*[g]*Latente Verdampfungswärme* (Wärmeleitfähigkeit von Filmkondensat^3))/(Länge der Platte*Viskosität des Films* (Sättigungstemperatur-Plattenoberflächentemperatur)))^(0.25)
Kondensationsnummer
Gehen Kondensationszahl = (Durchschnittlicher Wärmeübertragungskoeffizient)* ((((Viskosität des Films)^2)/((Wärmeleitfähigkeit^3)*(Dichte des Flüssigkeitsfilms)*(Dichte des Flüssigkeitsfilms-Dichte des Dampfes)*[g]))^(1/3))
Kondensationszahl bei gegebener Reynolds-Zahl
Gehen Kondensationszahl = ((Konstante für die Kondensationszahl)^(4/3))* (((4*sin(Neigungswinkel)*((Querschnittsfläche der Strömung/Benetzter Umfang)))/(Länge der Platte))^(1/3))* ((Reynolds-Nummer des Films)^(-1/3))
Kritischer Wärmefluss von Zuber
Gehen Kritischer Wärmestrom = ((0.149*Enthalpie der Verdampfung von Flüssigkeit*Dichte des Dampfes)* (((Oberflächenspannung*[g])*(Dichte der Flüssigkeit-Dichte des Dampfes))/ (Dichte des Dampfes^2))^(1/4))
Durchschnittlicher Wärmeübertragungskoeffizient bei gegebener Reynolds-Zahl und Eigenschaften bei Filmtemperatur
Gehen Durchschnittlicher Wärmeübertragungskoeffizient = (0.026*(Prandtl-Zahl bei Filmtemperatur^(1/3))*(Reynolds-Zahl zum Mischen^(0.8))*(Wärmeleitfähigkeit bei Filmtemperatur))/Durchmesser des Rohrs
Wärmeübertragungsrate für die Kondensation überhitzter Dämpfe
Gehen Wärmeübertragung = Durchschnittlicher Wärmeübertragungskoeffizient*Fläche der Platte*(Sättigungstemperatur für überhitzten Dampf-Plattenoberflächentemperatur)
Von Mostinski vorgeschlagene Korrelation für den Wärmefluss
Gehen Wärmeübertragungskoeffizient für das Blasensieden = 0.00341*(Kritischer Druck^2.3)*(Übertemperatur beim Blasensieden^2.33)*(Verringerter Druck^0.566)
Wärmefluss im voll entwickelten Siedezustand für höhere Drücke
Gehen Wärmeübertragungsrate = 283.2*Bereich*((Übertemperatur)^(3))*((Druck)^(4/3))
Wärmefluss im voll entwickelten Siedezustand für Drücke bis zu 0,7 Megapascal
Gehen Wärmeübertragungsrate = 2.253*Bereich*((Übertemperatur)^(3.96))
Kondensationszahl für horizontalen Zylinder
Gehen Kondensationszahl = 1.514*((Reynolds-Nummer des Films)^(-1/3))
Kondensationszahl bei Turbulenzen im Film
Gehen Kondensationszahl = 0.0077*((Reynolds-Nummer des Films)^(0.4))
Kondensationszahl für vertikale Platte
Gehen Kondensationszahl = 1.47*((Reynolds-Nummer des Films)^(-1/3))

14 Sieden Taschenrechner

Radius der Dampfblase im mechanischen Gleichgewicht in überhitzter Flüssigkeit
Gehen Radius der Dampfblase = (2*Oberflächenspannung*[R]*(Sättigungstemperatur^2))/(Druck der überhitzten Flüssigkeit*Enthalpie der Verdampfung von Flüssigkeit*(Temperatur der überhitzten Flüssigkeit-Sättigungstemperatur))
Kritischer Wärmefluss von Zuber
Gehen Kritischer Wärmestrom = ((0.149*Enthalpie der Verdampfung von Flüssigkeit*Dichte des Dampfes)* (((Oberflächenspannung*[g])*(Dichte der Flüssigkeit-Dichte des Dampfes))/ (Dichte des Dampfes^2))^(1/4))
Strahlungswärmeübertragungskoeffizient
Gehen Strahlungswärmeübertragungskoeffizient = (([Stefan-BoltZ]*Emissionsgrad*(((Plattenoberflächentemperatur)^4)-((Sättigungstemperatur)^4)))/(Plattenoberflächentemperatur-Sättigungstemperatur))
Gesamtwärmeübertragungskoeffizient
Gehen Gesamtwärmeübertragungskoeffizient = Wärmeübertragungskoeffizient im Filmsiedebereich* ((Wärmeübertragungskoeffizient im Filmsiedebereich/Hitzeübertragungskoeffizient)^(1/3))+Strahlungswärmeübertragungskoeffizient
Modifizierte Verdampfungswärme
Gehen Modifizierte Verdampfungswärme = (Latente Verdampfungswärme+(Spezifische Wärme von Wasserdampf)*((Plattenoberflächentemperatur-Sättigungstemperatur)/2))
Modifizierter Wärmeübergangskoeffizient unter Druckeinfluss
Gehen Wärmeübertragungskoeffizient bei einem gewissen Druck P = (Wärmeübertragungskoeffizient bei atmosphärischem Druck)*((Systemdruck/Normaler atmosphärischer Druck)^(0.4))
Von Mostinski vorgeschlagene Korrelation für den Wärmefluss
Gehen Wärmeübertragungskoeffizient für das Blasensieden = 0.00341*(Kritischer Druck^2.3)*(Übertemperatur beim Blasensieden^2.33)*(Verringerter Druck^0.566)
Wärmeübertragungskoeffizient für erzwungenes lokales Sieden in vertikalen Rohren
Gehen Wärmeübergangskoeffizient für erzwungene Konvektion = (2.54*((Übertemperatur)^3)*exp((Systemdruck in vertikalen Rohren)/1.551))
Wärmefluss im voll entwickelten Siedezustand für höhere Drücke
Gehen Wärmeübertragungsrate = 283.2*Bereich*((Übertemperatur)^(3))*((Druck)^(4/3))
Wärmeübertragungskoeffizient bei gegebener Biot-Zahl
Gehen Hitzeübertragungskoeffizient = (Biot-Nummer*Wärmeleitfähigkeit)/Wandstärke
Oberflächentemperatur bei Übertemperatur
Gehen Oberflächentemperatur = Sättigungstemperatur+Übertemperatur bei der Wärmeübertragung
Gesättigte Temperatur bei Übertemperatur
Gehen Sättigungstemperatur = Oberflächentemperatur-Übertemperatur bei der Wärmeübertragung
Übertemperatur beim Kochen
Gehen Übertemperatur bei der Wärmeübertragung = Oberflächentemperatur-Sättigungstemperatur
Wärmefluss im voll entwickelten Siedezustand für Drücke bis zu 0,7 Megapascal
Gehen Wärmeübertragungsrate = 2.253*Bereich*((Übertemperatur)^(3.96))

Wärmefluss im voll entwickelten Siedezustand für Drücke bis zu 0,7 Megapascal Formel

Wärmeübertragungsrate = 2.253*Bereich*((Übertemperatur)^(3.96))
qrate = 2.253*A*((ΔTx)^(3.96))
Let Others Know
Facebook
Twitter
Reddit
LinkedIn
Email
WhatsApp
Copied!