Sección transversal de colisión en gas ideal Solución

PASO 0: Resumen del cálculo previo
Fórmula utilizada
Sección transversal de colisión = (Frecuencia de colisión/Densidad numérica para moléculas A*Densidad numérica para moléculas B)*sqrt(pi*Masa reducida de los reactivos A y B/8*[BoltZ]*Temperatura en términos de dinámica molecular)
σAB = (Z/nA*nB)*sqrt(pi*μAB/8*[BoltZ]*T)
Esta fórmula usa 2 Constantes, 1 Funciones, 6 Variables
Constantes utilizadas
[BoltZ] - constante de Boltzmann Valor tomado como 1.38064852E-23
pi - La constante de Arquímedes. Valor tomado como 3.14159265358979323846264338327950288
Funciones utilizadas
sqrt - Una función de raíz cuadrada es una función que toma un número no negativo como entrada y devuelve la raíz cuadrada del número de entrada dado., sqrt(Number)
Variables utilizadas
Sección transversal de colisión - (Medido en Metro cuadrado) - La sección transversal de colisión se define como el área alrededor de una partícula en la que debe estar el centro de otra partícula para que ocurra una colisión.
Frecuencia de colisión - (Medido en Metro cúbico por segundo) - La frecuencia de colisión se define como el número de colisiones por segundo por unidad de volumen de la mezcla de reacción.
Densidad numérica para moléculas A - (Medido en Mol por metro cúbico) - La densidad numérica de las moléculas A se expresa como un número de moles por unidad de volumen (y por lo tanto se denomina concentración molar).
Densidad numérica para moléculas B - (Medido en Mol por metro cúbico) - La densidad numérica de las moléculas B se expresa como un número de moles por unidad de volumen (y, por lo tanto, llamada concentración molar) de moléculas B.
Masa reducida de los reactivos A y B - (Medido en Kilogramo) - La masa reducida de los reactivos A y B es la masa inercial que aparece en el problema de dos cuerpos de la mecánica newtoniana.
Temperatura en términos de dinámica molecular - (Medido en Kelvin) - La temperatura en términos de dinámica molecular es el grado o intensidad de calor presente en una molécula durante la colisión.
PASO 1: Convierta la (s) entrada (s) a la unidad base
Frecuencia de colisión: 7 Metro cúbico por segundo --> 7 Metro cúbico por segundo No se requiere conversión
Densidad numérica para moléculas A: 18 Milimoles por centímetro cúbico --> 18000 Mol por metro cúbico (Verifique la conversión aquí)
Densidad numérica para moléculas B: 14 Milimoles por centímetro cúbico --> 14000 Mol por metro cúbico (Verifique la conversión aquí)
Masa reducida de los reactivos A y B: 30 Kilogramo --> 30 Kilogramo No se requiere conversión
Temperatura en términos de dinámica molecular: 85 Kelvin --> 85 Kelvin No se requiere conversión
PASO 2: Evaluar la fórmula
Sustituir valores de entrada en una fórmula
σAB = (Z/nA*nB)*sqrt(pi*μAB/8*[BoltZ]*T) --> (7/18000*14000)*sqrt(pi*30/8*[BoltZ]*85)
Evaluar ... ...
σAB = 6.40169780905547E-10
PASO 3: Convierta el resultado a la unidad de salida
6.40169780905547E-10 Metro cuadrado --> No se requiere conversión
RESPUESTA FINAL
6.40169780905547E-10 6.4E-10 Metro cuadrado <-- Sección transversal de colisión
(Cálculo completado en 00.020 segundos)

Créditos

Creado por Soupayan banerjee
Universidad Nacional de Ciencias Judiciales (NUJS), Calcuta
¡Soupayan banerjee ha creado esta calculadora y 200+ más calculadoras!
Verificada por Prerana Bakli
Universidad de Hawái en Mānoa (UH Manoa), Hawái, Estados Unidos
¡Prerana Bakli ha verificado esta calculadora y 1600+ más calculadoras!

19 Dinámica de reacción molecular Calculadoras

Sección transversal de colisión en gas ideal
Vamos Sección transversal de colisión = (Frecuencia de colisión/Densidad numérica para moléculas A*Densidad numérica para moléculas B)*sqrt(pi*Masa reducida de los reactivos A y B/8*[BoltZ]*Temperatura en términos de dinámica molecular)
Frecuencia de colisión en gas ideal
Vamos Frecuencia de colisión = Densidad numérica para moléculas A*Densidad numérica para moléculas B*Sección transversal de colisión*sqrt((8*[BoltZ]*Tiempo en términos de gas ideal/pi*Masa reducida de los reactivos A y B))
Masa reducida de reactivos utilizando la frecuencia de colisión
Vamos Masa reducida de los reactivos A y B = ((Densidad numérica para moléculas A*Densidad numérica para moléculas B*Sección transversal de colisión/Frecuencia de colisión)^2)*(8*[BoltZ]*Temperatura en términos de dinámica molecular/pi)
Temperatura de partículas moleculares utilizando la tasa de colisión
Vamos Temperatura en términos de dinámica molecular = (3*Viscosidad del fluido en Quantum*Número de colisiones por segundo)/(8* [BoltZ]*Concentración de partículas de igual tamaño en solución)
Número de colisiones por segundo en partículas del mismo tamaño
Vamos Número de colisiones por segundo = ((8*[BoltZ]*Temperatura en términos de dinámica molecular*Concentración de partículas de igual tamaño en solución)/(3*Viscosidad del fluido en Quantum))
Concentración de partículas de igual tamaño en solución utilizando la tasa de colisión
Vamos Concentración de partículas de igual tamaño en solución = (3*Viscosidad del fluido en Quantum*Número de colisiones por segundo)/(8*[BoltZ]*Temperatura en términos de dinámica molecular)
Viscosidad de la solución utilizando la tasa de colisión
Vamos Viscosidad del fluido en Quantum = (8*[BoltZ]*Temperatura en términos de dinámica molecular*Concentración de partículas de igual tamaño en solución)/(3*Número de colisiones por segundo)
Densidad numérica para moléculas A usando la constante de tasa de colisión
Vamos Densidad numérica para moléculas A = Frecuencia de colisión/(Velocidad de las moléculas de haz*Densidad numérica para moléculas B*Área de sección transversal para Quantum)
Área de sección transversal utilizando la tasa de colisiones moleculares
Vamos Área de sección transversal para Quantum = Frecuencia de colisión/(Velocidad de las moléculas de haz*Densidad numérica para moléculas B*Densidad numérica para moléculas A)
Número de colisiones bimoleculares por unidad de tiempo por unidad de volumen
Vamos Frecuencia de colisión = Densidad numérica para moléculas A*Densidad numérica para moléculas B*Velocidad de las moléculas de haz*Área de sección transversal para Quantum
Miss Distancia entre partículas en colisión
Vamos señorita distancia = sqrt(((Vector de distancia entre partículas^2)*Energía centrífuga)/Energía total antes de la colisión)
Masa reducida de reactivos A y B
Vamos Masa reducida de los reactivos A y B = (Masa del Reactivo B*Masa del Reactivo B)/(Masa del Reactivo A+Masa del Reactivo B)
Vector de distancia entre partículas en dinámica de reacción molecular
Vamos Vector de distancia entre partículas = sqrt(Energía total antes de la colisión*(señorita distancia^2)/Energía centrífuga)
Energía total antes de la colisión
Vamos Energía total antes de la colisión = Energía centrífuga*(Vector de distancia entre partículas^2)/(señorita distancia^2)
Energía Centrífuga en Colisión
Vamos Energía centrífuga = Energía total antes de la colisión*(señorita distancia^2)/(Vector de distancia entre partículas^2)
Sección transversal de colisión
Vamos Sección transversal de colisión = pi*((Radio de la molécula A*Radio de la molécula B)^2)
Frecuencia vibratoria dada la constante de Boltzmann
Vamos Frecuencia vibratoria = ([BoltZ]*Temperatura en términos de dinámica molecular)/[hP]
Separación de carga más grande en colisión
Vamos Separación de carga más grande = sqrt(Sección transversal de reacción/pi)
Sección transversal de reacción en colisión
Vamos Sección transversal de reacción = pi*(Separación de carga más grande^2)

Sección transversal de colisión en gas ideal Fórmula

Sección transversal de colisión = (Frecuencia de colisión/Densidad numérica para moléculas A*Densidad numérica para moléculas B)*sqrt(pi*Masa reducida de los reactivos A y B/8*[BoltZ]*Temperatura en términos de dinámica molecular)
σAB = (Z/nA*nB)*sqrt(pi*μAB/8*[BoltZ]*T)
Let Others Know
Facebook
Twitter
Reddit
LinkedIn
Email
WhatsApp
Copied!