Coeficiente de Hamaker Solución

PASO 0: Resumen del cálculo previo
Fórmula utilizada
Coeficiente de Hamaker A = (pi^2)*Coeficiente de interacción par partícula-partícula*Número Densidad de la partícula 1*Número Densidad de la partícula 2
AHC = (pi^2)*C*ρ1*ρ2
Esta fórmula usa 1 Constantes, 4 Variables
Constantes utilizadas
pi - La constante de Arquímedes. Valor tomado como 3.14159265358979323846264338327950288
Variables utilizadas
Coeficiente de Hamaker A - El coeficiente A de Hamaker se puede definir para una interacción cuerpo-cuerpo de Van der Waals.
Coeficiente de interacción par partícula-partícula - El coeficiente de interacción del par partícula-partícula se puede determinar a partir del potencial del par de Van der Waals.
Número Densidad de la partícula 1 - (Medido en 1 por metro cúbico) - La densidad numérica de la partícula 1 es una cantidad intensiva utilizada para describir el grado de concentración de objetos contables (partículas, moléculas, fonones, células, galaxias, etc.) en el espacio físico.
Número Densidad de la partícula 2 - (Medido en 1 por metro cúbico) - La densidad numérica de la partícula 2 es una cantidad intensiva que se utiliza para describir el grado de concentración de objetos contables (partículas, moléculas, fonones, células, galaxias, etc.) en el espacio físico.
PASO 1: Convierta la (s) entrada (s) a la unidad base
Coeficiente de interacción par partícula-partícula: 8 --> No se requiere conversión
Número Densidad de la partícula 1: 3 1 por metro cúbico --> 3 1 por metro cúbico No se requiere conversión
Número Densidad de la partícula 2: 5 1 por metro cúbico --> 5 1 por metro cúbico No se requiere conversión
PASO 2: Evaluar la fórmula
Sustituir valores de entrada en una fórmula
AHC = (pi^2)*C*ρ12 --> (pi^2)*8*3*5
Evaluar ... ...
AHC = 1184.35252813072
PASO 3: Convierta el resultado a la unidad de salida
1184.35252813072 --> No se requiere conversión
RESPUESTA FINAL
1184.35252813072 1184.353 <-- Coeficiente de Hamaker A
(Cálculo completado en 00.004 segundos)

Créditos

Creado por Prerana Bakli
Universidad de Hawái en Mānoa (UH Manoa), Hawái, Estados Unidos
¡Prerana Bakli ha creado esta calculadora y 800+ más calculadoras!
Verificada por Prashant Singh
Facultad de Ciencias KJ Somaiya (KJ Somaiya), Mumbai
¡Prashant Singh ha verificado esta calculadora y 500+ más calculadoras!

4 Coeficiente de Hamaker Calculadoras

Coeficiente de Hamaker usando energía de interacción de Van der Waals
Vamos Coeficiente de Hamaker = (-Energía de interacción de Van der Waals*6)/(((2*Radio del cuerpo esférico 1*Radio del cuerpo esférico 2)/((Distancia de centro a centro^2)-((Radio del cuerpo esférico 1+Radio del cuerpo esférico 2)^2)))+((2*Radio del cuerpo esférico 1*Radio del cuerpo esférico 2)/((Distancia de centro a centro^2)-((Radio del cuerpo esférico 1-Radio del cuerpo esférico 2)^2)))+ln(((Distancia de centro a centro^2)-((Radio del cuerpo esférico 1+Radio del cuerpo esférico 2)^2))/((Distancia de centro a centro^2)-((Radio del cuerpo esférico 1-Radio del cuerpo esférico 2)^2))))
Coeficiente de Hamaker usando fuerzas de Van der Waals entre objetos
Vamos Coeficiente de Hamaker = (-Fuerza de Van der Waals*(Radio del cuerpo esférico 1+Radio del cuerpo esférico 2)*6*(Distancia entre superficies^2))/(Radio del cuerpo esférico 1*Radio del cuerpo esférico 2)
Coeficiente de Hamaker usando energía potencial en el límite de aproximación más cercana
Vamos Coeficiente de Hamaker = (-Energía potencial*(Radio del cuerpo esférico 1+Radio del cuerpo esférico 2)*6*Distancia entre superficies)/(Radio del cuerpo esférico 1*Radio del cuerpo esférico 2)
Coeficiente de Hamaker
Vamos Coeficiente de Hamaker A = (pi^2)*Coeficiente de interacción par partícula-partícula*Número Densidad de la partícula 1*Número Densidad de la partícula 2

20 Fórmulas importantes sobre diferentes modelos de gas real Calculadoras

Temperatura crítica usando la ecuación de Peng Robinson dados parámetros reducidos y reales
Vamos Temperatura real del gas = ((Presión+(((Parámetro de Peng-Robinson a*función α)/((Volumen molar^2)+(2*Parámetro b de Peng-Robinson*Volumen molar)-(Parámetro b de Peng-Robinson^2)))))*((Volumen molar-Parámetro b de Peng-Robinson)/[R]))/Temperatura reducida
Temperatura del gas real usando la ecuación de Peng Robinson
Vamos Temperatura dada CE = (Presión+(((Parámetro de Peng-Robinson a*función α)/((Volumen molar^2)+(2*Parámetro b de Peng-Robinson*Volumen molar)-(Parámetro b de Peng-Robinson^2)))))*((Volumen molar-Parámetro b de Peng-Robinson)/[R])
Presión crítica de gas real utilizando la ecuación de Redlich Kwong reducida
Vamos Presión crítica = Presión/(((3*Temperatura reducida)/(Volumen molar reducido-0.26))-(1/(0.26*sqrt(Temperatura del gas)*Volumen molar reducido*(Volumen molar reducido+0.26))))
Temperatura crítica del gas real usando la ecuación de Redlich Kwong reducida
Vamos Temperatura crítica dada RKE = Temperatura del gas/(((Presión reducida+(1/(0.26*Volumen molar reducido*(Volumen molar reducido+0.26))))*((Volumen molar reducido-0.26)/3))^(2/3))
Temperatura real del gas real utilizando la ecuación de Redlich Kwong reducida
Vamos Temperatura del gas = Temperatura crítica*(((Presión reducida+(1/(0.26*Volumen molar reducido*(Volumen molar reducido+0.26))))*((Volumen molar reducido-0.26)/3))^(2/3))
Presión reducida dado el parámetro b de Peng Robinson, otros parámetros reales y reducidos
Vamos Presión crítica dada PRP = Presión/(0.07780*[R]*(Temperatura del gas/Temperatura reducida)/Parámetro b de Peng-Robinson)
Temperatura reducida usando la ecuación de Redlich Kwong dada de 'a' y 'b'
Vamos Temperatura dada PRP = Temperatura del gas/((3^(2/3))*(((2^(1/3))-1)^(4/3))*((Parámetro Redlich-Kwong a/(Parámetro b de Redlich-Kwong*[R]))^(2/3)))
Coeficiente de Hamaker
Vamos Coeficiente de Hamaker A = (pi^2)*Coeficiente de interacción par partícula-partícula*Número Densidad de la partícula 1*Número Densidad de la partícula 2
Presión crítica dado el parámetro b de Peng Robinson y otros parámetros reales y reducidos
Vamos Presión crítica dada PRP = 0.07780*[R]*(Temperatura del gas/Temperatura reducida)/Parámetro b de Peng-Robinson
Temperatura real del gas real usando la ecuación de Redlich Kwong dada 'b'
Vamos Temperatura real del gas = Temperatura reducida*((Parámetro b de Redlich-Kwong*Presión crítica)/(0.08664*[R]))
Temperatura real dado el parámetro b de Peng Robinson, otros parámetros reducidos y críticos
Vamos Temperatura dada PRP = Temperatura reducida*((Parámetro b de Peng-Robinson*Presión crítica)/(0.07780*[R]))
Temperatura reducida dado el parámetro a de Peng Robinson y otros parámetros reales y críticos
Vamos Temperatura del gas = Temperatura/(sqrt((Parámetro de Peng-Robinson a*Presión crítica)/(0.45724*([R]^2))))
Radio del cuerpo esférico 1 dada la distancia de centro a centro
Vamos Radio del cuerpo esférico 1 = Distancia de centro a centro-Distancia entre superficies-Radio del cuerpo esférico 2
Radio del cuerpo esférico 2 dada la distancia de centro a centro
Vamos Radio del cuerpo esférico 2 = Distancia de centro a centro-Distancia entre superficies-Radio del cuerpo esférico 1
Distancia entre superficies dada Distancia de centro a centro
Vamos Distancia entre superficies = Distancia de centro a centro-Radio del cuerpo esférico 1-Radio del cuerpo esférico 2
Distancia de centro a centro
Vamos Distancia de centro a centro = Radio del cuerpo esférico 1+Radio del cuerpo esférico 2+Distancia entre superficies
Presión real dado el parámetro a de Peng Robinson y otros parámetros reducidos y críticos
Vamos Presión dada PRP = Presión reducida*(0.45724*([R]^2)*(Temperatura crítica^2)/Parámetro de Peng-Robinson a)
Temperatura crítica del gas real usando la ecuación de Redlich Kwong dada 'b'
Vamos Temperatura crítica dada RKE yb = (Parámetro b de Redlich-Kwong*Presión crítica)/(0.08664*[R])
Parámetro b de Redlich Kwong en el punto crítico
Vamos Parámetro b = (0.08664*[R]*Temperatura crítica)/Presión crítica
Peng Robinson Parámetro b de gas real dados parámetros críticos
Vamos Parámetro b = 0.07780*[R]*Temperatura crítica/Presión crítica

Coeficiente de Hamaker Fórmula

Coeficiente de Hamaker A = (pi^2)*Coeficiente de interacción par partícula-partícula*Número Densidad de la partícula 1*Número Densidad de la partícula 2
AHC = (pi^2)*C*ρ1*ρ2

¿Cuáles son las principales características de las fuerzas de Van der Waals?

1) Son más débiles que los enlaces iónicos y covalentes normales. 2) Las fuerzas de Van der Waals son aditivas y no pueden saturarse. 3) No tienen característica direccional. 4) Todas son fuerzas de corto alcance y, por lo tanto, solo deben considerarse las interacciones entre las partículas más cercanas (en lugar de todas las partículas). La atracción de Van der Waals es mayor si las moléculas están más cerca. 5) Las fuerzas de Van der Waals son independientes de la temperatura, excepto en las interacciones dipolo-dipolo.

Let Others Know
Facebook
Twitter
Reddit
LinkedIn
Email
WhatsApp
Copied!