Energía interna dada la entropía libre de Gibbs Solución

PASO 0: Resumen del cálculo previo
Fórmula utilizada
Energía interna = ((entropía-Entropía libre de Gibbs)*Temperatura)-(Presión*Volumen)
U = ((S-Ξ)*T)-(P*VT)
Esta fórmula usa 6 Variables
Variables utilizadas
Energía interna - (Medido en Joule) - La energía interna de un sistema termodinámico es la energía contenida en su interior. Es la energía necesaria para crear o preparar el sistema en cualquier estado interno determinado.
entropía - (Medido en Joule por Kelvin) - La entropía es la medida de la energía térmica de un sistema por unidad de temperatura que no está disponible para realizar un trabajo útil.
Entropía libre de Gibbs - (Medido en Joule por Kelvin) - La entropía libre de Gibbs es un potencial termodinámico entrópico análogo a la energía libre.
Temperatura - (Medido en Kelvin) - La temperatura es el grado o intensidad del calor presente en una sustancia u objeto.
Presión - (Medido en Pascal) - La presión es la fuerza aplicada perpendicularmente a la superficie de un objeto por unidad de área sobre la cual se distribuye esa fuerza.
Volumen - (Medido en Metro cúbico) - El volumen es la cantidad de espacio que ocupa una sustancia u objeto o que está encerrado dentro de un recipiente.
PASO 1: Convierta la (s) entrada (s) a la unidad base
entropía: 71 Joule por Kelvin --> 71 Joule por Kelvin No se requiere conversión
Entropía libre de Gibbs: 70.2 Joule por Kelvin --> 70.2 Joule por Kelvin No se requiere conversión
Temperatura: 298 Kelvin --> 298 Kelvin No se requiere conversión
Presión: 80 Pascal --> 80 Pascal No se requiere conversión
Volumen: 63 Litro --> 0.063 Metro cúbico (Verifique la conversión aquí)
PASO 2: Evaluar la fórmula
Sustituir valores de entrada en una fórmula
U = ((S-Ξ)*T)-(P*VT) --> ((71-70.2)*298)-(80*0.063)
Evaluar ... ...
U = 233.359999999999
PASO 3: Convierta el resultado a la unidad de salida
233.359999999999 Joule --> No se requiere conversión
RESPUESTA FINAL
233.359999999999 233.36 Joule <-- Energía interna
(Cálculo completado en 00.004 segundos)

Créditos

Creado por Prashant Singh
Facultad de Ciencias KJ Somaiya (KJ Somaiya), Mumbai
¡Prashant Singh ha creado esta calculadora y 700+ más calculadoras!
Verificada por Prerana Bakli
Universidad de Hawái en Mānoa (UH Manoa), Hawái, Estados Unidos
¡Prerana Bakli ha verificado esta calculadora y 1600+ más calculadoras!

3 Fórmulas importantes de energía libre y entropía de Gibbs y energía libre y entropía de Helmholtz Calculadoras

Energía interna dada la entropía libre de Gibbs
Vamos Energía interna = ((entropía-Entropía libre de Gibbs)*Temperatura)-(Presión*Volumen)
Potencial de celda estándar dado el cambio estándar en la energía libre de Gibbs
Vamos Potencial de celda estándar = -(Energía libre de Gibbs estándar)/(Moles de electrones transferidos*[Faraday])
Cambio estándar en la energía libre de Gibbs dado el potencial de celda estándar
Vamos Energía libre de Gibbs estándar = -(Moles de electrones transferidos)*[Faraday]*Potencial de celda estándar

15 Energía libre de Gibbs y entropía libre de Gibbs Calculadoras

Energía interna dada la entropía libre de Gibbs
Vamos Energía interna = ((entropía-Entropía libre de Gibbs)*Temperatura)-(Presión*Volumen)
Entropía dada la entropía libre de Gibbs
Vamos entropía = Entropía libre de Gibbs+((Energía interna+(Presión*Volumen))/Temperatura)
Presión dada la entropía libre de Gibbs
Vamos Presión = (((entropía-Entropía libre de Gibbs)*Temperatura)-Energía interna)/Volumen
Volumen dado Entropía libre de Gibbs
Vamos Volumen = (((entropía-Entropía libre de Gibbs)*Temperatura)-Energía interna)/Presión
Entropía libre de Gibbs
Vamos Entropía libre de Gibbs = entropía-((Energía interna+(Presión*Volumen))/Temperatura)
Entropía libre de Helmholtz dada la entropía libre de Gibbs
Vamos Entropía libre de Helmholtz = (Entropía libre de Gibbs+((Presión*Volumen)/Temperatura))
Moles de electrones transferidos dado el cambio estándar en la energía libre de Gibbs
Vamos Moles de electrones transferidos = -(Energía libre de Gibbs estándar)/([Faraday]*Potencial de celda estándar)
Potencial de celda estándar dado el cambio estándar en la energía libre de Gibbs
Vamos Potencial de celda estándar = -(Energía libre de Gibbs estándar)/(Moles de electrones transferidos*[Faraday])
Cambio estándar en la energía libre de Gibbs dado el potencial de celda estándar
Vamos Energía libre de Gibbs estándar = -(Moles de electrones transferidos)*[Faraday]*Potencial de celda estándar
Moles de electrones transferidos dado el cambio en la energía libre de Gibbs
Vamos Moles de electrones transferidos = (-Energía libre de Gibbs)/([Faraday]*Potencial celular)
Cambio en la energía libre de Gibbs dado el potencial de celda
Vamos Energía libre de Gibbs = (-Moles de electrones transferidos*[Faraday]*Potencial celular)
Parte eléctrica de la entropía libre de Gibbs dada la parte clásica
Vamos Entropía libre de Gibbs de la parte eléctrica = (Entropía libre de Gibbs-Entropía libre de gibbs de la parte clásica)
Entropía libre de Gibbs dada la parte clásica y eléctrica
Vamos Entropía libre de Gibbs = (Entropía libre de gibbs de la parte clásica+Entropía libre de Gibbs de la parte eléctrica)
Entropía libre de Gibbs dada la energía libre de Gibbs
Vamos Entropía libre de Gibbs = -(Energía libre de Gibbs/Temperatura)
Cambio en la energía libre de Gibbs dado el trabajo electroquímico
Vamos Energía libre de Gibbs = -(Trabajo hecho)

Energía interna dada la entropía libre de Gibbs Fórmula

Energía interna = ((entropía-Entropía libre de Gibbs)*Temperatura)-(Presión*Volumen)
U = ((S-Ξ)*T)-(P*VT)

¿Qué es la ley de limitación de Debye-Hückel?

Los químicos Peter Debye y Erich Hückel notaron que las soluciones que contienen solutos iónicos no se comportan de manera ideal incluso a concentraciones muy bajas. Entonces, si bien la concentración de los solutos es fundamental para el cálculo de la dinámica de una solución, teorizaron que un factor adicional que denominaron gamma es necesario para el cálculo de los coeficientes de actividad de la solución. Por lo tanto, desarrollaron la ecuación de Debye-Hückel y la ley límite de Debye-Hückel. La actividad es solo proporcional a la concentración y se ve alterada por un factor conocido como coeficiente de actividad. Este factor tiene en cuenta la energía de interacción de los iones en solución.

Let Others Know
Facebook
Twitter
Reddit
LinkedIn
Email
WhatsApp
Copied!