Momento de viento máximo para embarcaciones con altura total inferior a 20 m Solución

PASO 0: Resumen del cálculo previo
Fórmula utilizada
Momento de viento máximo = Carga de viento que actúa sobre la parte inferior del recipiente*(Altura total del recipiente/2)
Mw = Plw*(H/2)
Esta fórmula usa 3 Variables
Variables utilizadas
Momento de viento máximo - (Medido en Metro de Newton) - El momento máximo del viento se calcula en función de una serie de factores, que incluyen la velocidad y dirección del viento, el tamaño y la forma del edificio o estructura, los materiales utilizados en la construcción.
Carga de viento que actúa sobre la parte inferior del recipiente - (Medido en Newton) - La carga del viento que actúa sobre la parte inferior del buque se refiere a las fuerzas y tensiones que genera el viento que actúa sobre la superficie del buque por debajo de su centro de gravedad.
Altura total del recipiente - (Medido en Milímetro) - La altura total del recipiente puede variar ampliamente según su diseño y tamaño.
PASO 1: Convierta la (s) entrada (s) a la unidad base
Carga de viento que actúa sobre la parte inferior del recipiente: 67 Newton --> 67 Newton No se requiere conversión
Altura total del recipiente: 15 Metro --> 15000 Milímetro (Verifique la conversión aquí)
PASO 2: Evaluar la fórmula
Sustituir valores de entrada en una fórmula
Mw = Plw*(H/2) --> 67*(15000/2)
Evaluar ... ...
Mw = 502500
PASO 3: Convierta el resultado a la unidad de salida
502500 Metro de Newton -->502500000 newton milímetro (Verifique la conversión aquí)
RESPUESTA FINAL
502500000 5E+8 newton milímetro <-- Momento de viento máximo
(Cálculo completado en 00.004 segundos)

Créditos

Creado por hoja
Facultad de Ingeniería Thadomal Shahani (Tsec), Bombay
¡hoja ha creado esta calculadora y 200+ más calculadoras!
Verificada por Prerana Bakli
Universidad de Hawái en Mānoa (UH Manoa), Hawái, Estados Unidos
¡Prerana Bakli ha verificado esta calculadora y 1600+ más calculadoras!

16 Grosor del diseño de la falda Calculadoras

Carga de viento que actúa sobre la parte inferior del recipiente
Vamos Carga de viento que actúa sobre la parte inferior del recipiente = Coeficiente en función del factor de forma*Período de coeficiente de un ciclo de vibración*Presión del viento que actúa en la parte inferior del recipiente*Altura de la parte inferior del recipiente*Diámetro exterior del recipiente
Momento de Viento Máximo para Embarcación con Altura Total Mayor a 20m
Vamos Momento de viento máximo = Carga de viento que actúa sobre la parte inferior del recipiente*(Altura de la parte inferior del recipiente/2)+Carga de viento que actúa sobre la parte superior del buque*(Altura de la parte inferior del recipiente+(Altura de la parte superior del recipiente/2))
Carga de viento que actúa sobre la parte superior del buque
Vamos Carga de viento que actúa sobre la parte superior del buque = Coeficiente en función del factor de forma*Período de coeficiente de un ciclo de vibración*Presión del viento actuando sobre la parte superior del buque*Altura de la parte superior del recipiente*Diámetro exterior del recipiente
Espesor de la placa de apoyo dentro de la silla
Vamos Espesor de la placa de apoyo dentro de la silla = sqrt((6*Momento de flexión máximo en la placa de apoyo)/((Ancho de la placa de apoyo-Diámetro del orificio del perno en la placa de apoyo)*Tensión admisible en el material del perno))
Carga total de compresión en el anillo base
Vamos Carga total de compresión en el anillo base = (((4*Momento de flexión máximo)/((pi)*(Diámetro medio de la falda)^(2)))+(Peso total del buque/(pi*Diámetro medio de la falda)))
Grosor de la placa base
Vamos Grosor de la placa base = Diferencia del radio exterior de la placa de apoyo y el faldón*(sqrt((3*Tensión máxima de compresión)/(Tensión de flexión admisible)))
Grosor del faldón en el recipiente
Vamos Grosor del faldón en el recipiente = (4*Momento de viento máximo)/(pi*(Diámetro medio de la falda)^(2)*Esfuerzo de flexión axial en la base del recipiente)
Esfuerzo de flexión axial debido a la carga del viento en la base del recipiente
Vamos Esfuerzo de flexión axial en la base del recipiente = (4*Momento de viento máximo)/(pi*(Diámetro medio de la falda)^(2)*Grosor de la falda)
Esfuerzo de flexión máximo en la placa anular base
Vamos Esfuerzo de flexión máximo en la placa anular base = (6*Momento de flexión máximo)/(Longitud circunferencial de la placa de apoyo*Grosor de la placa base^(2))
Esfuerzo de compresión debido a la fuerza vertical hacia abajo
Vamos Tensión de compresión debido a la fuerza = Peso total del buque/(pi*Diámetro medio de la falda*Grosor de la falda)
Ancho mínimo del anillo base
Vamos Ancho mínimo del anillo base = Carga total de compresión en el anillo base/Estrés en placa de apoyo y cimentación de hormigón
Momento de viento máximo para embarcaciones con altura total inferior a 20 m
Vamos Momento de viento máximo = Carga de viento que actúa sobre la parte inferior del recipiente*(Altura total del recipiente/2)
Esfuerzo de tracción máximo
Vamos Tensión de tracción máxima = Esfuerzo debido al momento flector-Tensión de compresión debido a la fuerza
Momento de flexión máximo en la placa de apoyo dentro de la silla
Vamos Momento de flexión máximo en la placa de apoyo = (Carga en cada perno*Espaciado interior de sillas)/8
Brazo de momento para el peso mínimo de la embarcación
Vamos Brazo de momento para el peso mínimo de la embarcación = 0.42*Diámetro exterior de la placa de cojinete
Presión mínima del viento en la embarcación
Vamos Presión mínima del viento = 0.05*(Velocidad máxima del viento)^(2)

Momento de viento máximo para embarcaciones con altura total inferior a 20 m Fórmula

Momento de viento máximo = Carga de viento que actúa sobre la parte inferior del recipiente*(Altura total del recipiente/2)
Mw = Plw*(H/2)
Let Others Know
Facebook
Twitter
Reddit
LinkedIn
Email
WhatsApp
Copied!