Masa molar del segundo gas según la ley de Graham Solución

PASO 0: Resumen del cálculo previo
Fórmula utilizada
Masa molar of Second Gas = ((Tasa de efusión del primer gas/Tasa de efusión del segundo gas)^2)*Masa molar del primer gas
M2 = ((r1/r2)^2)*M1
Esta fórmula usa 4 Variables
Variables utilizadas
Masa molar of Second Gas - (Medido en Kilogramo por Mole) - La masa molar del segundo gas se define como la masa del gas por mol.
Tasa de efusión del primer gas - (Medido en Metro cúbico por segundo) - La tasa de efusión del primer gas es el caso especial de difusión cuando se permite que el primer gas escape a través del pequeño orificio.
Tasa de efusión del segundo gas - (Medido en Metro cúbico por segundo) - La tasa de efusión del segundo gas es el caso especial de difusión cuando se permite que el segundo gas escape a través del pequeño orificio.
Masa molar del primer gas - (Medido en Kilogramo por Mole) - La masa molar del primer gas se define como la masa del gas por mol.
PASO 1: Convierta la (s) entrada (s) a la unidad base
Tasa de efusión del primer gas: 2.12 Metro cúbico por segundo --> 2.12 Metro cúbico por segundo No se requiere conversión
Tasa de efusión del segundo gas: 0.12 Metro cúbico por segundo --> 0.12 Metro cúbico por segundo No se requiere conversión
Masa molar del primer gas: 34.56 Gramo por Mole --> 0.03456 Kilogramo por Mole (Verifique la conversión aquí)
PASO 2: Evaluar la fórmula
Sustituir valores de entrada en una fórmula
M2 = ((r1/r2)^2)*M1 --> ((2.12/0.12)^2)*0.03456
Evaluar ... ...
M2 = 10.78656
PASO 3: Convierta el resultado a la unidad de salida
10.78656 Kilogramo por Mole -->10786.56 Gramo por Mole (Verifique la conversión aquí)
RESPUESTA FINAL
10786.56 Gramo por Mole <-- Masa molar of Second Gas
(Cálculo completado en 00.004 segundos)

Créditos

Creado por Prashant Singh
Facultad de Ciencias KJ Somaiya (KJ Somaiya), Mumbai
¡Prashant Singh ha creado esta calculadora y 700+ más calculadoras!
Verificada por Prerana Bakli
Universidad de Hawái en Mānoa (UH Manoa), Hawái, Estados Unidos
¡Prerana Bakli ha verificado esta calculadora y 1600+ más calculadoras!

8 Ley de Graham Calculadoras

Tasa de efusión del segundo gas según la ley de Graham
Vamos Tasa de efusión del segundo gas = Tasa de efusión del primer gas/(sqrt(Masa molar of Second Gas/Masa molar del primer gas))
Tasa de efusión del primer gas según la ley de Graham
Vamos Tasa de efusión del primer gas = (sqrt(Masa molar of Second Gas/Masa molar del primer gas))*Tasa de efusión del segundo gas
Tasa de efusión para el segundo gas dadas las densidades por la ley de Graham
Vamos Tasa de efusión del segundo gas = Tasa de efusión del primer gas/(sqrt(Densidad del segundo gas/Densidad del primer gas))
Tasa de efusión para el primer gas dadas las densidades por la ley de Graham
Vamos Tasa de efusión del primer gas = (sqrt(Densidad del segundo gas/Densidad del primer gas))*Tasa de efusión del segundo gas
Masa molar del segundo gas según la ley de Graham
Vamos Masa molar of Second Gas = ((Tasa de efusión del primer gas/Tasa de efusión del segundo gas)^2)*Masa molar del primer gas
Masa molar del primer gas según la ley de Graham
Vamos Masa molar del primer gas = Masa molar of Second Gas/((Tasa de efusión del primer gas/Tasa de efusión del segundo gas)^2)
Densidad del segundo gas por la ley de Graham
Vamos Densidad del segundo gas = ((Tasa de efusión del primer gas/Tasa de efusión del segundo gas)^2)*Densidad del primer gas
Densidad del primer gas por la ley de Graham
Vamos Densidad del primer gas = Densidad del segundo gas/((Tasa de efusión del primer gas/Tasa de efusión del segundo gas)^2)

Masa molar del segundo gas según la ley de Graham Fórmula

Masa molar of Second Gas = ((Tasa de efusión del primer gas/Tasa de efusión del segundo gas)^2)*Masa molar del primer gas
M2 = ((r1/r2)^2)*M1

¿Qué es la ley de Graham?

La ley de efusión de Graham (también llamada ley de difusión de Graham) fue formulada por el químico físico escocés Thomas Graham en 1848. Graham descubrió experimentalmente que la velocidad de efusión de un gas es inversamente proporcional a la raíz cuadrada de la masa molar de sus partículas. La ley de Graham es más precisa para la efusión molecular que implica el movimiento de un gas a la vez a través de un agujero. Solo es aproximado para la difusión de un gas en otro o en el aire, ya que estos procesos implican el movimiento de más de un gas. En las mismas condiciones de temperatura y presión, la masa molar es proporcional a la densidad de la masa. Por lo tanto, las tasas de difusión de diferentes gases son inversamente proporcionales a las raíces cuadradas de sus densidades de masa.

Let Others Know
Facebook
Twitter
Reddit
LinkedIn
Email
WhatsApp
Copied!