Presión exterior de celosía Solución

PASO 0: Resumen del cálculo previo
Fórmula utilizada
Energía de red de presión = (Entalpía de celosía-Energía reticular)/Energía de red de volumen molar
pLE = (ΔH-U)/Vm_LE
Esta fórmula usa 4 Variables
Variables utilizadas
Energía de red de presión - (Medido en Pascal) - Presión Energía de red La presión es la fuerza aplicada perpendicularmente a la superficie de un objeto por unidad de área sobre la cual se distribuye esa fuerza.
Entalpía de celosía - (Medido en Joule / Mole) - La entalpía de celosía es la entalpía de celosía molar que contribuye al trabajo involucrado en la formación de una celosía.
Energía reticular - (Medido en Joule / Mole) - La energía reticular de un sólido cristalino es una medida de la energía liberada cuando los iones se combinan para formar un compuesto.
Energía de red de volumen molar - (Medido en Metro cúbico / Mole) - La energía reticular de volumen molar es el volumen ocupado por un mol de una sustancia que puede ser un elemento químico o un compuesto químico a temperatura y presión estándar.
PASO 1: Convierta la (s) entrada (s) a la unidad base
Entalpía de celosía: 21420 Joule / Mole --> 21420 Joule / Mole No se requiere conversión
Energía reticular: 3500 Joule / Mole --> 3500 Joule / Mole No se requiere conversión
Energía de red de volumen molar: 22.4 Metro cúbico / Mole --> 22.4 Metro cúbico / Mole No se requiere conversión
PASO 2: Evaluar la fórmula
Sustituir valores de entrada en una fórmula
pLE = (ΔH-U)/Vm_LE --> (21420-3500)/22.4
Evaluar ... ...
pLE = 800
PASO 3: Convierta el resultado a la unidad de salida
800 Pascal --> No se requiere conversión
RESPUESTA FINAL
800 Pascal <-- Energía de red de presión
(Cálculo completado en 00.004 segundos)

Créditos

Creado por Prerana Bakli
Universidad de Hawái en Mānoa (UH Manoa), Hawái, Estados Unidos
¡Prerana Bakli ha creado esta calculadora y 800+ más calculadoras!
Verificada por Akshada Kulkarni
Instituto Nacional de Tecnología de la Información (NIIT), Neemrana
¡Akshada Kulkarni ha verificado esta calculadora y 900+ más calculadoras!

25 Energía reticular Calculadoras

Energía de celosía usando la ecuación de Born-Mayer
Vamos Energía reticular = (-[Avaga-no]*Constante de Madelung*Carga de catión*Carga de anión*([Charge-e]^2)*(1-(Constante en función de la compresibilidad/Distancia de acercamiento más cercano)))/(4*pi*[Permitivity-vacuum]*Distancia de acercamiento más cercano)
Constante dependiendo de la compresibilidad usando la ecuación de Born-Mayer
Vamos Constante en función de la compresibilidad = (((Energía reticular*4*pi*[Permitivity-vacuum]*Distancia de acercamiento más cercano)/([Avaga-no]*Constante de Madelung*Carga de catión*Carga de anión*([Charge-e]^2)))+1)*Distancia de acercamiento más cercano
Energía potencial mínima de ion
Vamos Energía potencial mínima de iones = ((-(Cobrar^2)*([Charge-e]^2)*Constante de Madelung)/(4*pi*[Permitivity-vacuum]*Distancia de acercamiento más cercano))+(Constante de interacción repulsiva/(Distancia de acercamiento más cercano^exponente nacido))
Constante de interacción repulsiva usando energía total de iones
Vamos Constante de interacción repulsiva = (Energía total de iones-(-(Constante de Madelung*(Cobrar^2)*([Charge-e]^2))/(4*pi*[Permitivity-vacuum]*Distancia de acercamiento más cercano)))*(Distancia de acercamiento más cercano^exponente nacido)
Energía total de iones dadas cargas y distancias
Vamos Energía total de iones = ((-(Cobrar^2)*([Charge-e]^2)*Constante de Madelung)/(4*pi*[Permitivity-vacuum]*Distancia de acercamiento más cercano))+(Constante de interacción repulsiva/(Distancia de acercamiento más cercano^exponente nacido))
Energía de celosía usando la ecuación de Born-Lande usando la aproximación de Kapustinskii
Vamos Energía reticular = -([Avaga-no]*Número de iones*0.88 *Carga de catión*Carga de anión*([Charge-e]^2)*(1-(1/exponente nacido)))/(4*pi*[Permitivity-vacuum]*Distancia de acercamiento más cercano)
Energía de celosía utilizando la ecuación de Born Lande
Vamos Energía reticular = -([Avaga-no]*Constante de Madelung*Carga de catión*Carga de anión*([Charge-e]^2)*(1-(1/exponente nacido)))/(4*pi*[Permitivity-vacuum]*Distancia de acercamiento más cercano)
Exponente de Born utilizando la ecuación de Lande de Born
Vamos exponente nacido = 1/(1-(-Energía reticular*4*pi*[Permitivity-vacuum]*Distancia de acercamiento más cercano)/([Avaga-no]*Constante de Madelung*([Charge-e]^2)*Carga de catión*Carga de anión))
Exponente de Born usando la ecuación de Born-Lande sin Constante de Madelung
Vamos exponente nacido = 1/(1-(-Energía reticular*4*pi*[Permitivity-vacuum]*Distancia de acercamiento más cercano)/([Avaga-no]*Número de iones*0.88*([Charge-e]^2)*Carga de catión*Carga de anión))
Energía de celosía usando la ecuación de Kapustinskii
Vamos Energía reticular para la ecuación de Kapustinskii = (1.20200*(10^(-4))*Número de iones*Carga de catión*Carga de anión*(1-((3.45*(10^(-11)))/(Radio de catión+Radio de anión))))/(Radio de catión+Radio de anión)
Constante de interacción repulsiva dada la constante de Madelung
Vamos Constante de interacción repulsiva dada M = (Constante de Madelung*(Cobrar^2)*([Charge-e]^2)*(Distancia de acercamiento más cercano^(exponente nacido-1)))/(4*pi*[Permitivity-vacuum]*exponente nacido)
Energía de celosía usando la ecuación original de Kapustinskii
Vamos Energía reticular para la ecuación de Kapustinskii = ((([Kapustinskii_C]/1.20200)*1.079) *Número de iones*Carga de catión*Carga de anión)/(Radio de catión+Radio de anión)
Interacción repulsiva usando energía total de iones dadas cargas y distancias
Vamos Interacción repulsiva = Energía total de iones-(-(Cobrar^2)*([Charge-e]^2)*Constante de Madelung)/(4*pi*[Permitivity-vacuum]*Distancia de acercamiento más cercano)
Exponente nacido usando interacción repulsiva
Vamos exponente nacido = (log10(Constante de interacción repulsiva/Interacción repulsiva))/log10(Distancia de acercamiento más cercano)
Energía potencial electrostática entre un par de iones
Vamos Energía potencial electrostática entre pares de iones = (-(Cobrar^2)*([Charge-e]^2))/(4*pi*[Permitivity-vacuum]*Distancia de acercamiento más cercano)
Constante de interacción repulsiva dada la energía total de Ion y Madelung Energy
Vamos Constante de interacción repulsiva = (Energía total de iones-(Energía Madelung))*(Distancia de acercamiento más cercano^exponente nacido)
Constante de interacción repulsiva
Vamos Constante de interacción repulsiva = Interacción repulsiva*(Distancia de acercamiento más cercano^exponente nacido)
Interacción repulsiva
Vamos Interacción repulsiva = Constante de interacción repulsiva/(Distancia de acercamiento más cercano^exponente nacido)
Energía de celosía usando entalpía de celosía
Vamos Energía reticular = Entalpía de celosía-(Energía de red de presión*Energía de red de volumen molar)
Entalpía de celosía usando energía de celosía
Vamos Entalpía de celosía = Energía reticular+(Energía de red de presión*Energía de red de volumen molar)
Cambio de volumen de celosía
Vamos Energía de red de volumen molar = (Entalpía de celosía-Energía reticular)/Energía de red de presión
Presión exterior de celosía
Vamos Energía de red de presión = (Entalpía de celosía-Energía reticular)/Energía de red de volumen molar
Interacción repulsiva usando energía total de iones
Vamos Interacción repulsiva = Energía total de iones-(Energía Madelung)
Energía total de iones en la red
Vamos Energía total de iones = Energía Madelung+Interacción repulsiva
Número de iones usando la aproximación de Kapustinskii
Vamos Número de iones = Constante de Madelung/0.88

Presión exterior de celosía Fórmula

Energía de red de presión = (Entalpía de celosía-Energía reticular)/Energía de red de volumen molar
pLE = (ΔH-U)/Vm_LE

¿Por qué la energía reticular y la entalpía se definen con signos opuestos?

La energía reticular y la entalpía se definen utilizando signos opuestos como la energía necesaria para convertir el cristal en iones gaseosos infinitamente separados en el vacío, un proceso endotérmico. Siguiendo esta convención, la energía reticular del NaCl sería 786 kJ / mol. La energía de la red para los cristales iónicos como el cloruro de sodio, metales como el hierro o materiales enlazados covalentemente como el diamante es considerablemente mayor en magnitud que para los sólidos como el azúcar o el yodo, cuyas moléculas neutras interactúan solo por un dipolo-dipolo o van der más débiles. Fuerzas de Waals.

Let Others Know
Facebook
Twitter
Reddit
LinkedIn
Email
WhatsApp
Copied!