EMF induit dans l'enroulement primaire Solution

ÉTAPE 0: Résumé du pré-calcul
Formule utilisée
CEM induit au primaire = 4.44*Nombre de tours en primaire*Fréquence d'approvisionnement*Zone de noyau*Densité de flux maximale
E1 = 4.44*N1*f*Acore*Bmax
Cette formule utilise 5 Variables
Variables utilisées
CEM induit au primaire - (Mesuré en Volt) - La FEM induite dans l'enroulement primaire est la production de tension dans une bobine en raison du changement de flux magnétique à travers une bobine.
Nombre de tours en primaire - Le nombre de tours dans l'enroulement primaire est le nombre de tours que l'enroulement primaire est l'enroulement d'un transformateur.
Fréquence d'approvisionnement - (Mesuré en Hertz) - La fréquence d'alimentation signifie que les moteurs à induction sont conçus pour une tension spécifique par rapport de fréquence (V/Hz). La tension est appelée tension d'alimentation et la fréquence est appelée « fréquence d'alimentation ».
Zone de noyau - (Mesuré en Mètre carré) - La zone du noyau est définie comme l'espace occupé par le noyau d'un transformateur dans un espace à 2 dimensions.
Densité de flux maximale - (Mesuré en Tesla) - La densité de flux maximale est définie comme le nombre de lignes de force traversant une unité de surface de matériau.
ÉTAPE 1: Convertir les entrées en unité de base
Nombre de tours en primaire: 20 --> Aucune conversion requise
Fréquence d'approvisionnement: 500 Hertz --> 500 Hertz Aucune conversion requise
Zone de noyau: 2500 place Centimètre --> 0.25 Mètre carré (Vérifiez la conversion ici)
Densité de flux maximale: 0.0012 Tesla --> 0.0012 Tesla Aucune conversion requise
ÉTAPE 2: Évaluer la formule
Remplacement des valeurs d'entrée dans la formule
E1 = 4.44*N1*f*Acore*Bmax --> 4.44*20*500*0.25*0.0012
Évaluer ... ...
E1 = 13.32
ÉTAPE 3: Convertir le résultat en unité de sortie
13.32 Volt --> Aucune conversion requise
RÉPONSE FINALE
13.32 Volt <-- CEM induit au primaire
(Calcul effectué en 00.004 secondes)

Crédits

Créé par Urvi Rathod
Collège d'ingénierie du gouvernement de Vishwakarma (VGEC), Ahmedabad
Urvi Rathod a créé cette calculatrice et 1500+ autres calculatrices!
Vérifié par Anirudh Singh
Institut national de technologie (LENTE), Jamshedpur
Anirudh Singh a validé cette calculatrice et 50+ autres calculatrices!

12 Tension Calculatrices

EMF induit dans l'enroulement secondaire
Aller CEM induit au secondaire = 4.44*Nombre de tours en secondaire*Fréquence d'approvisionnement*Zone de noyau*Densité de flux maximale
EMF induit dans l'enroulement primaire
Aller CEM induit au primaire = 4.44*Nombre de tours en primaire*Fréquence d'approvisionnement*Zone de noyau*Densité de flux maximale
Tension aux bornes en l'absence de charge
Aller Aucune tension de borne de charge = (Tension primaire* Nombre de tours en secondaire)/Nombre de tours en primaire
Tension de sortie donnée EMF induite dans l'enroulement secondaire
Aller Tension secondaire = CEM induit au secondaire-Courant secondaire*Impédance du secondaire
FEM induite dans l'enroulement primaire étant donné la tension d'entrée
Aller CEM induit au primaire = Tension primaire-Courant primaire*Impédance du primaire
Tension d'entrée lorsque la FEM induite dans l'enroulement primaire
Aller Tension primaire = CEM induit au primaire+Courant primaire*Impédance du primaire
EMF auto-induit du côté primaire
Aller EMF auto-induit dans le primaire = Réactance de fuite primaire*Courant primaire
FEM induite dans l'enroulement secondaire compte tenu du rapport de transformation de tension
Aller CEM induit au secondaire = CEM induit au primaire*Rapport de transformation
EMF induit dans l'enroulement primaire étant donné le rapport de transformation de tension
Aller CEM induit au primaire = CEM induit au secondaire/Rapport de transformation
EMF auto-induit du côté secondaire
Aller CEM induit au secondaire = Réactance de fuite secondaire*Courant secondaire
Tension secondaire donnée Rapport de transformation de tension
Aller Tension secondaire = Tension primaire*Rapport de transformation
Tension primaire donnée Rapport de transformation de tension
Aller Tension primaire = Tension secondaire/Rapport de transformation

25 Circuit de transformateur Calculatrices

EMF induit dans l'enroulement secondaire
Aller CEM induit au secondaire = 4.44*Nombre de tours en secondaire*Fréquence d'approvisionnement*Zone de noyau*Densité de flux maximale
EMF induit dans l'enroulement primaire
Aller CEM induit au primaire = 4.44*Nombre de tours en primaire*Fréquence d'approvisionnement*Zone de noyau*Densité de flux maximale
Impédance équivalente du transformateur du côté secondaire
Aller Impédance équivalente du secondaire = sqrt(Résistance équivalente du secondaire^2+Réactance équivalente du secondaire^2)
Impédance équivalente du transformateur du côté primaire
Aller Impédance équivalente du primaire = sqrt(Résistance équivalente du primaire^2+Réactance équivalente du primaire^2)
Résistance équivalente du côté secondaire
Aller Résistance équivalente du secondaire = Résistance du Secondaire+Résistance du Primaire*Rapport de transformation^2
Tension aux bornes en l'absence de charge
Aller Aucune tension de borne de charge = (Tension primaire* Nombre de tours en secondaire)/Nombre de tours en primaire
Chute de résistance primaire PU
Aller Chute de la résistance primaire PU = (Courant primaire*Résistance équivalente du primaire)/CEM induit au primaire
Résistance équivalente du côté primaire
Aller Résistance équivalente du primaire = Résistance du Primaire+Résistance du Secondaire/Rapport de transformation^2
Rapport de transformation donné Réactance de fuite secondaire
Aller Rapport de transformation = sqrt(Réactance de fuite secondaire/Réactance du secondaire dans le primaire)
Rapport de transformation donné Réactance de fuite primaire
Aller Rapport de transformation = sqrt(Réactance du primaire au secondaire/Réactance de fuite primaire)
Réactance équivalente du transformateur du côté primaire
Aller Réactance équivalente du primaire = Réactance de fuite primaire+Réactance du secondaire dans le primaire
Réactance équivalente du transformateur du côté secondaire
Aller Réactance équivalente du secondaire = Réactance de fuite secondaire+Réactance du primaire au secondaire
Réactance de l'enroulement secondaire dans le primaire
Aller Réactance du secondaire dans le primaire = Réactance de fuite secondaire/(Rapport de transformation^2)
Réactance de fuite primaire
Aller Réactance de fuite primaire = Réactance du primaire au secondaire/(Rapport de transformation^2)
Réactance de l'enroulement primaire dans le secondaire
Aller Réactance du primaire au secondaire = Réactance de fuite primaire*Rapport de transformation^2
Résistance de l'enroulement secondaire dans le primaire
Aller Résistance du secondaire au primaire = Résistance du Secondaire/Rapport de transformation^2
Résistance d'enroulement secondaire
Aller Résistance du Secondaire = Résistance du secondaire au primaire*Rapport de transformation^2
Résistance d'enroulement primaire
Aller Résistance du Primaire = Résistance du Primaire au Secondaire/(Rapport de transformation^2)
Résistance de l'enroulement primaire dans le secondaire
Aller Résistance du Primaire au Secondaire = Résistance du Primaire*Rapport de transformation^2
Rapport de transformation donné Nombre de tours primaire et secondaire
Aller Rapport de transformation = Nombre de tours en secondaire/Nombre de tours en primaire
Réactance de fuite secondaire
Aller Réactance de fuite secondaire = CEM auto-induit au secondaire/Courant secondaire
Rapport de transformation étant donné la tension primaire et secondaire
Aller Rapport de transformation = Tension secondaire/Tension primaire
Rapport de transformation donné Courant primaire et secondaire
Aller Rapport de transformation = Courant primaire/Courant secondaire
Tension secondaire donnée Rapport de transformation de tension
Aller Tension secondaire = Tension primaire*Rapport de transformation
Tension primaire donnée Rapport de transformation de tension
Aller Tension primaire = Tension secondaire/Rapport de transformation

EMF induit dans l'enroulement primaire Formule

CEM induit au primaire = 4.44*Nombre de tours en primaire*Fréquence d'approvisionnement*Zone de noyau*Densité de flux maximale
E1 = 4.44*N1*f*Acore*Bmax

Qu'est-ce que la CEM induite?

Le flux alternatif est lié à l'enroulement secondaire et, en raison du phénomène d'induction mutuelle, une force électromotrice est induite dans l'enroulement secondaire. L'amplitude de cette force électromotrice induite peut être trouvée en utilisant l'équation EMF suivante du transformateur.

Let Others Know
Facebook
Twitter
Reddit
LinkedIn
Email
WhatsApp
Copied!