Coefficient de Hamaker utilisant l'énergie d'interaction de Van der Waals Solution

ÉTAPE 0: Résumé du pré-calcul
Formule utilisée
Coefficient de Hamaker = (-Énergie d'interaction de Van der Waals*6)/(((2*Rayon du corps sphérique 1*Rayon du corps sphérique 2)/((Distance centre à centre^2)-((Rayon du corps sphérique 1+Rayon du corps sphérique 2)^2)))+((2*Rayon du corps sphérique 1*Rayon du corps sphérique 2)/((Distance centre à centre^2)-((Rayon du corps sphérique 1-Rayon du corps sphérique 2)^2)))+ln(((Distance centre à centre^2)-((Rayon du corps sphérique 1+Rayon du corps sphérique 2)^2))/((Distance centre à centre^2)-((Rayon du corps sphérique 1-Rayon du corps sphérique 2)^2))))
A = (-UVWaals*6)/(((2*R1*R2)/((z^2)-((R1+R2)^2)))+((2*R1*R2)/((z^2)-((R1-R2)^2)))+ln(((z^2)-((R1+R2)^2))/((z^2)-((R1-R2)^2))))
Cette formule utilise 1 Les fonctions, 5 Variables
Fonctions utilisées
ln - नैसर्गिक लॉगरिथम, ज्याला बेस e ला लॉगरिथम असेही म्हणतात, हे नैसर्गिक घातांकीय कार्याचे व्यस्त कार्य आहे., ln(Number)
Variables utilisées
Coefficient de Hamaker - (Mesuré en Joule) - Le coefficient de Hamaker A peut être défini pour une interaction corps-corps de Van der Waals.
Énergie d'interaction de Van der Waals - (Mesuré en Joule) - L'énergie d'interaction de Van der Waals comprend l'attraction et la répulsion entre les atomes, les molécules et les surfaces, ainsi que d'autres forces intermoléculaires.
Rayon du corps sphérique 1 - (Mesuré en Mètre) - Rayon du corps sphérique 1 représenté par R1.
Rayon du corps sphérique 2 - (Mesuré en Mètre) - Rayon du corps sphérique 2 représenté par R1.
Distance centre à centre - (Mesuré en Mètre) - La distance centre à centre est un concept de distance, également appelé espacement centré, z = R1 R2 r.
ÉTAPE 1: Convertir les entrées en unité de base
Énergie d'interaction de Van der Waals: 550 Joule --> 550 Joule Aucune conversion requise
Rayon du corps sphérique 1: 12 Angstrom --> 1.2E-09 Mètre (Vérifiez la conversion ici)
Rayon du corps sphérique 2: 15 Angstrom --> 1.5E-09 Mètre (Vérifiez la conversion ici)
Distance centre à centre: 40 Angstrom --> 4E-09 Mètre (Vérifiez la conversion ici)
ÉTAPE 2: Évaluer la formule
Remplacement des valeurs d'entrée dans la formule
A = (-UVWaals*6)/(((2*R1*R2)/((z^2)-((R1+R2)^2)))+((2*R1*R2)/((z^2)-((R1-R2)^2)))+ln(((z^2)-((R1+R2)^2))/((z^2)-((R1-R2)^2)))) --> (-550*6)/(((2*1.2E-09*1.5E-09)/((4E-09^2)-((1.2E-09+1.5E-09)^2)))+((2*1.2E-09*1.5E-09)/((4E-09^2)-((1.2E-09-1.5E-09)^2)))+ln(((4E-09^2)-((1.2E-09+1.5E-09)^2))/((4E-09^2)-((1.2E-09-1.5E-09)^2))))
Évaluer ... ...
A = -88913.4177708798
ÉTAPE 3: Convertir le résultat en unité de sortie
-88913.4177708798 Joule --> Aucune conversion requise
RÉPONSE FINALE
-88913.4177708798 -88913.417771 Joule <-- Coefficient de Hamaker
(Calcul effectué en 00.004 secondes)

Crédits

Créé par Prerana Bakli
Université d'Hawaï à Mānoa (UH Manoa), Hawaï, États-Unis
Prerana Bakli a créé cette calculatrice et 800+ autres calculatrices!
Vérifié par Prashant Singh
Collège des sciences KJ Somaiya (KJ Somaiya), Bombay
Prashant Singh a validé cette calculatrice et 500+ autres calculatrices!

4 Coefficient de Hamaker Calculatrices

Coefficient de Hamaker utilisant l'énergie d'interaction de Van der Waals
Aller Coefficient de Hamaker = (-Énergie d'interaction de Van der Waals*6)/(((2*Rayon du corps sphérique 1*Rayon du corps sphérique 2)/((Distance centre à centre^2)-((Rayon du corps sphérique 1+Rayon du corps sphérique 2)^2)))+((2*Rayon du corps sphérique 1*Rayon du corps sphérique 2)/((Distance centre à centre^2)-((Rayon du corps sphérique 1-Rayon du corps sphérique 2)^2)))+ln(((Distance centre à centre^2)-((Rayon du corps sphérique 1+Rayon du corps sphérique 2)^2))/((Distance centre à centre^2)-((Rayon du corps sphérique 1-Rayon du corps sphérique 2)^2))))
Coefficient de Hamaker utilisant les forces de Van der Waals entre les objets
Aller Coefficient de Hamaker = (-Force de Van der Waals*(Rayon du corps sphérique 1+Rayon du corps sphérique 2)*6*(Distance entre les surfaces^2))/(Rayon du corps sphérique 1*Rayon du corps sphérique 2)
Coefficient de Hamaker utilisant l'énergie potentielle dans la limite d'approche la plus proche
Aller Coefficient de Hamaker = (-Énergie potentielle*(Rayon du corps sphérique 1+Rayon du corps sphérique 2)*6*Distance entre les surfaces)/(Rayon du corps sphérique 1*Rayon du corps sphérique 2)
Coefficient de Hamaker
Aller Coefficient de Hamaker A = (pi^2)*Coefficient d'interaction particule-paire de particules*Nombre Densité de la particule 1*Nombre Densité de la particule 2

Coefficient de Hamaker utilisant l'énergie d'interaction de Van der Waals Formule

Coefficient de Hamaker = (-Énergie d'interaction de Van der Waals*6)/(((2*Rayon du corps sphérique 1*Rayon du corps sphérique 2)/((Distance centre à centre^2)-((Rayon du corps sphérique 1+Rayon du corps sphérique 2)^2)))+((2*Rayon du corps sphérique 1*Rayon du corps sphérique 2)/((Distance centre à centre^2)-((Rayon du corps sphérique 1-Rayon du corps sphérique 2)^2)))+ln(((Distance centre à centre^2)-((Rayon du corps sphérique 1+Rayon du corps sphérique 2)^2))/((Distance centre à centre^2)-((Rayon du corps sphérique 1-Rayon du corps sphérique 2)^2))))
A = (-UVWaals*6)/(((2*R1*R2)/((z^2)-((R1+R2)^2)))+((2*R1*R2)/((z^2)-((R1-R2)^2)))+ln(((z^2)-((R1+R2)^2))/((z^2)-((R1-R2)^2))))

Quelles sont les principales caractéristiques des forces de Van der Waals?

1) Ils sont plus faibles que les liaisons covalentes et ioniques normales. 2) Les forces de Van der Waals sont additives et ne peuvent pas être saturées. 3) Ils n'ont pas de caractéristique directionnelle. 4) Ce sont toutes des forces à courte portée et, par conséquent, seules les interactions entre les particules les plus proches doivent être prises en compte (au lieu de toutes les particules). L'attraction de Van der Waals est plus grande si les molécules sont plus proches. 5) Les forces de Van der Waals sont indépendantes de la température, sauf pour les interactions dipôle-dipôle.

Let Others Know
Facebook
Twitter
Reddit
LinkedIn
Email
WhatsApp
Copied!