Pression osmotique compte tenu de l'élévation du point d'ébullition Solution

ÉTAPE 0: Résumé du pré-calcul
Formule utilisée
Pression osmotique = (Enthalpie molaire de vaporisation*Élévation du point d'ébullition*Température)/((Point d'ébullition du solvant^2)*Volume molaire)
π = (ΔHvap*ΔTb*T)/((Tbp^2)*Vm)
Cette formule utilise 6 Variables
Variables utilisées
Pression osmotique - (Mesuré en Pascal) - La pression osmotique est la pression minimale qui doit être appliquée à une solution pour empêcher l'écoulement vers l'intérieur de son solvant pur à travers une membrane semi-perméable.
Enthalpie molaire de vaporisation - (Mesuré en Joule / Mole) - L'enthalpie molaire de vaporisation est la quantité d'énergie nécessaire pour changer une mole d'une substance de la phase liquide à la phase gazeuse à température et pression constantes.
Élévation du point d'ébullition - (Mesuré en Kelvin) - L'élévation du point d'ébullition fait référence à l'augmentation du point d'ébullition d'un solvant lors de l'ajout d'un soluté.
Température - (Mesuré en Kelvin) - La température est le degré ou l'intensité de la chaleur présente dans une substance ou un objet.
Point d'ébullition du solvant - (Mesuré en Kelvin) - Le point d'ébullition du solvant est la température à laquelle la pression de vapeur du solvant est égale à la pression environnante et se transforme en vapeur.
Volume molaire - (Mesuré en Mètre cube / Mole) - Le volume molaire est le volume occupé par une mole d'une substance qui peut être un élément chimique ou un composé chimique à température et pression standard.
ÉTAPE 1: Convertir les entrées en unité de base
Enthalpie molaire de vaporisation: 40.7 Kilojoule / Mole --> 40700 Joule / Mole (Vérifiez la conversion ici)
Élévation du point d'ébullition: 0.99 Kelvin --> 0.99 Kelvin Aucune conversion requise
Température: 85 Kelvin --> 85 Kelvin Aucune conversion requise
Point d'ébullition du solvant: 15 Kelvin --> 15 Kelvin Aucune conversion requise
Volume molaire: 32 Mètre cube / Mole --> 32 Mètre cube / Mole Aucune conversion requise
ÉTAPE 2: Évaluer la formule
Remplacement des valeurs d'entrée dans la formule
π = (ΔHvap*ΔTb*T)/((Tbp^2)*Vm) --> (40700*0.99*85)/((15^2)*32)
Évaluer ... ...
π = 475.68125
ÉTAPE 3: Convertir le résultat en unité de sortie
475.68125 Pascal --> Aucune conversion requise
RÉPONSE FINALE
475.68125 475.6812 Pascal <-- Pression osmotique
(Calcul effectué en 00.020 secondes)

Crédits

Créé par Prerana Bakli
Université d'Hawaï à Mānoa (UH Manoa), Hawaï, États-Unis
Prerana Bakli a créé cette calculatrice et 800+ autres calculatrices!
Vérifié par Akshada Kulkarni
Institut national des technologies de l'information (NIIT), Neemrana
Akshada Kulkarni a validé cette calculatrice et 900+ autres calculatrices!

24 Élévation du point d'ébullition Calculatrices

Élévation du point d'ébullition en fonction de la pression de vapeur
Aller Élévation du point d'ébullition = ((Pression de vapeur du solvant pur-Pression de vapeur du solvant en solution)*[R]*(Point d'ébullition du solvant^2))/(Enthalpie molaire de vaporisation*Pression de vapeur du solvant pur)
Élévation du point d'ébullition compte tenu de la dépression du point de congélation
Aller Élévation du point d'ébullition = (Enthalpie molaire de fusion*Dépression au point de congélation*(Point d'ébullition du solvant^2))/(Enthalpie molaire de vaporisation*(Point de congélation du solvant^2))
Abaissement relatif de la pression de vapeur compte tenu de l'élévation du point d'ébullition
Aller Abaissement relatif de la pression de vapeur = (Enthalpie molaire de vaporisation*Élévation du point d'ébullition)/([R]*Point d'ébullition du solvant*Point d'ébullition du solvant)
Constante ébullioscopique utilisant l'enthalpie molaire de vaporisation
Aller Constante ébullioscopique du solvant = ([R]*Point d'ébullition du solvant*Point d'ébullition du solvant*Masse molaire du solvant)/(1000*Enthalpie molaire de vaporisation)
Élévation du point d'ébullition compte tenu de la pression osmotique
Aller Élévation du point d'ébullition = (Pression osmotique*Volume molaire*(Point d'ébullition du solvant^2))/(Température*Enthalpie molaire de vaporisation)
Pression osmotique compte tenu de l'élévation du point d'ébullition
Aller Pression osmotique = (Enthalpie molaire de vaporisation*Élévation du point d'ébullition*Température)/((Point d'ébullition du solvant^2)*Volume molaire)
Point d'ébullition du solvant en élévation du point d'ébullition
Aller Point d'ébullition du solvant = sqrt((Constante d'élévation du point d'ébullition molal*Chaleur Molale de Vaporisation*1000)/([R]*Masse moléculaire))
Point d'ébullition du solvant compte tenu de la constante ébullioscopique et de l'enthalpie molaire de vaporisation
Aller Point d'ébullition du solvant = sqrt((Constante ébullioscopique du solvant*1000*Enthalpie molaire de vaporisation)/([R]*Masse molaire du solvant))
Élévation du point d'ébullition compte tenu de l'abaissement relatif de la pression de vapeur
Aller Élévation du point d'ébullition = (Abaissement relatif de la pression de vapeur*[R]*(Point d'ébullition du solvant^2))/Enthalpie molaire de vaporisation
Poids moléculaire du solvant en élévation du point d'ébullition
Aller Masse moléculaire = (Constante d'élévation du point d'ébullition molal*Chaleur Molale de Vaporisation*1000)/([R]*(Point d'ébullition du solvant^2))
Chaleur latente de vaporisation donnée Point d'ébullition du solvant
Aller La chaleur latente de vaporisation = ([R]*Point d'ébullition du solvant*Point d'ébullition du solvant)/(1000*Constante ébullioscopique du solvant)
Enthalpie molaire de vaporisation donnée au point d'ébullition du solvant
Aller Enthalpie molaire de vaporisation = ([R]*(Point d'ébullition du solvant^2)*Masse molaire du solvant)/(1000*Constante ébullioscopique du solvant)
Masse molaire du solvant donnée Constante ébullioscopique
Aller Masse molaire du solvant = (1000*Constante ébullioscopique du solvant*Enthalpie molaire de vaporisation)/([R]*(Point d'ébullition du solvant^2))
Point d'ébullition du solvant compte tenu de la constante ébullioscopique et de la chaleur latente de vaporisation
Aller Point d'ébullition du solvant = sqrt((Constante ébullioscopique du solvant*1000*La chaleur latente de vaporisation)/[R])
Constante ébullioscopique utilisant la chaleur latente de vaporisation
Aller Constante ébullioscopique du solvant = ([R]*Solvant BP compte tenu de la chaleur latente de vaporisation^2)/(1000*La chaleur latente de vaporisation)
Constante d'élévation du point d'ébullition molaire étant donné la constante de gaz parfait
Aller Constante d'élévation du point d'ébullition molal = (Constante du gaz universel*(Point d'ébullition du solvant)^2*Masse moléculaire)/(1000)
Facteur de Van't Hoff de l'électrolyte compte tenu de l'élévation du point d'ébullition
Aller Le facteur Van't Hoff = Élévation du point d'ébullition/(Constante ébullioscopique du solvant*Molalité)
Constante ébullioscopique étant donné l'élévation du point d'ébullition
Aller Constante ébullioscopique du solvant = Élévation du point d'ébullition/(Le facteur Van't Hoff*Molalité)
Molality compte tenu de l'élévation du point d'ébullition
Aller Molalité = Élévation du point d'ébullition/(Le facteur Van't Hoff*Constante ébullioscopique du solvant)
Équation de Van't Hoff pour l'élévation du point d'ébullition de l'électrolyte
Aller Élévation du point d'ébullition = Le facteur Van't Hoff*Constante ébullioscopique du solvant*Molalité
Constante d'élévation du point d'ébullition molaire étant donné l'élévation du point d'ébullition
Aller Constante d'élévation du point d'ébullition molal = Élévation du point d'ébullition/Molalité
Molality compte tenu de l'élévation du point d'ébullition et de la constante
Aller Molalité = Élévation du point d'ébullition/Constante d'élévation du point d'ébullition molal
Élévation du point d'ébullition
Aller Élévation du point d'ébullition = Constante d'élévation du point d'ébullition molal*Molalité
Élévation du point d'ébullition du solvant
Aller Élévation du point d'ébullition = Constante ébullioscopique du solvant*Molalité

Pression osmotique compte tenu de l'élévation du point d'ébullition Formule

Pression osmotique = (Enthalpie molaire de vaporisation*Élévation du point d'ébullition*Température)/((Point d'ébullition du solvant^2)*Volume molaire)
π = (ΔHvap*ΔTb*T)/((Tbp^2)*Vm)

Pourquoi la pression osmotique est-elle importante?

La pression osmotique est d'une importance vitale en biologie car la membrane de la cellule est sélective vis-à-vis de nombreux solutés présents dans les organismes vivants. Lorsqu'une cellule est placée dans une solution hypertonique, l'eau s'écoule en fait de la cellule dans la solution environnante, provoquant ainsi le rétrécissement des cellules et la perte de leur turgescence.

Let Others Know
Facebook
Twitter
Reddit
LinkedIn
Email
WhatsApp
Copied!