Rayon du corps sphérique 2 étant donné la distance centre à centre Solution

ÉTAPE 0: Résumé du pré-calcul
Formule utilisée
Rayon du corps sphérique 2 = Distance centre à centre-Distance entre les surfaces-Rayon du corps sphérique 1
R2 = z-r-R1
Cette formule utilise 4 Variables
Variables utilisées
Rayon du corps sphérique 2 - (Mesuré en Mètre) - Rayon du corps sphérique 2 représenté par R1.
Distance centre à centre - (Mesuré en Mètre) - La distance centre à centre est un concept de distance, également appelé espacement centré, z = R1 R2 r.
Distance entre les surfaces - (Mesuré en Mètre) - La distance entre les surfaces est la longueur du segment de ligne entre les 2 surfaces.
Rayon du corps sphérique 1 - (Mesuré en Mètre) - Rayon du corps sphérique 1 représenté par R1.
ÉTAPE 1: Convertir les entrées en unité de base
Distance centre à centre: 40 Angstrom --> 4E-09 Mètre (Vérifiez la conversion ici)
Distance entre les surfaces: 10 Angstrom --> 1E-09 Mètre (Vérifiez la conversion ici)
Rayon du corps sphérique 1: 12 Angstrom --> 1.2E-09 Mètre (Vérifiez la conversion ici)
ÉTAPE 2: Évaluer la formule
Remplacement des valeurs d'entrée dans la formule
R2 = z-r-R1 --> 4E-09-1E-09-1.2E-09
Évaluer ... ...
R2 = 1.8E-09
ÉTAPE 3: Convertir le résultat en unité de sortie
1.8E-09 Mètre -->18 Angstrom (Vérifiez la conversion ici)
RÉPONSE FINALE
18 Angstrom <-- Rayon du corps sphérique 2
(Calcul effectué en 00.020 secondes)

Crédits

Créé par Prerana Bakli
Université d'Hawaï à Mānoa (UH Manoa), Hawaï, États-Unis
Prerana Bakli a créé cette calculatrice et 800+ autres calculatrices!
Vérifié par Prashant Singh
Collège des sciences KJ Somaiya (KJ Somaiya), Bombay
Prashant Singh a validé cette calculatrice et 500+ autres calculatrices!

21 Force de Van der Waals Calculatrices

Énergie d'interaction de Van der Waals entre deux corps sphériques
Aller Énergie d'interaction de Van der Waals = (-(Coefficient de Hamaker/6))*(((2*Rayon du corps sphérique 1*Rayon du corps sphérique 2)/((Distance centre à centre^2)-((Rayon du corps sphérique 1+Rayon du corps sphérique 2)^2)))+((2*Rayon du corps sphérique 1*Rayon du corps sphérique 2)/((Distance centre à centre^2)-((Rayon du corps sphérique 1-Rayon du corps sphérique 2)^2)))+ln(((Distance centre à centre^2)-((Rayon du corps sphérique 1+Rayon du corps sphérique 2)^2))/((Distance centre à centre^2)-((Rayon du corps sphérique 1-Rayon du corps sphérique 2)^2))))
Distance entre les surfaces étant donné la force de Van Der Waals entre deux sphères
Aller Distance entre les surfaces = sqrt((Coefficient de Hamaker*Rayon du corps sphérique 1*Rayon du corps sphérique 2)/((Rayon du corps sphérique 1+Rayon du corps sphérique 2)*6*Énergie potentielle))
Force de Van der Waals entre deux sphères
Aller Force de Van der Waals = (Coefficient de Hamaker*Rayon du corps sphérique 1*Rayon du corps sphérique 2)/((Rayon du corps sphérique 1+Rayon du corps sphérique 2)*6*(Distance entre les surfaces^2))
Distance entre les surfaces compte tenu de l'énergie potentielle dans la limite d'approche rapprochée
Aller Distance entre les surfaces = (-Coefficient de Hamaker*Rayon du corps sphérique 1*Rayon du corps sphérique 2)/((Rayon du corps sphérique 1+Rayon du corps sphérique 2)*6*Énergie potentielle)
Énergie potentielle dans la limite d'approche la plus proche
Aller Énergie potentielle = (-Coefficient de Hamaker*Rayon du corps sphérique 1*Rayon du corps sphérique 2)/((Rayon du corps sphérique 1+Rayon du corps sphérique 2)*6*Distance entre les surfaces)
Rayon du corps sphérique 1 compte tenu de la force de Van der Waals entre deux sphères
Aller Rayon du corps sphérique 1 = 1/((Coefficient de Hamaker/(Force de Van der Waals*6*(Distance entre les surfaces^2)))-(1/Rayon du corps sphérique 2))
Rayon du corps sphérique 2 étant donné la force de Van Der Waals entre deux sphères
Aller Rayon du corps sphérique 2 = 1/((Coefficient de Hamaker/(Force de Van der Waals*6*(Distance entre les surfaces^2)))-(1/Rayon du corps sphérique 1))
Rayon du corps sphérique 1 étant donné l'énergie potentielle dans la limite d'approche la plus proche
Aller Rayon du corps sphérique 1 = 1/((-Coefficient de Hamaker/(Énergie potentielle*6*Distance entre les surfaces))-(1/Rayon du corps sphérique 2))
Rayon du corps sphérique 2 étant donné l'énergie potentielle dans la limite d'approche la plus proche
Aller Rayon du corps sphérique 2 = 1/((-Coefficient de Hamaker/(Énergie potentielle*6*Distance entre les surfaces))-(1/Rayon du corps sphérique 1))
Coefficient d'interaction particule-paire de particules
Aller Coefficient d'interaction particule-paire de particules = Coefficient de Hamaker/((pi^2)*Nombre Densité de la particule 1*Nombre Densité de la particule 2)
Rayon du corps sphérique 1 étant donné la distance centre à centre
Aller Rayon du corps sphérique 1 = Distance centre à centre-Distance entre les surfaces-Rayon du corps sphérique 2
Rayon du corps sphérique 2 étant donné la distance centre à centre
Aller Rayon du corps sphérique 2 = Distance centre à centre-Distance entre les surfaces-Rayon du corps sphérique 1
Distance entre les surfaces donnée Distance centre à centre
Aller Distance entre les surfaces = Distance centre à centre-Rayon du corps sphérique 1-Rayon du corps sphérique 2
Distance centre à centre
Aller Distance centre à centre = Rayon du corps sphérique 1+Rayon du corps sphérique 2+Distance entre les surfaces
Distance entre les surfaces étant donné le potentiel de paire de Van Der Waals
Aller Distance entre les surfaces = ((0-Coefficient d'interaction particule-paire de particules)/Potentiel de paire de Van der Waals)^(1/6)
Coefficient d'interaction de paire particule-particule compte tenu du potentiel de paire de Van der Waals
Aller Coefficient d'interaction particule-paire de particules = (-1*Potentiel de paire de Van der Waals)*(Distance entre les surfaces^6)
Potentiel de paire de Van Der Waals
Aller Potentiel de paire de Van der Waals = (0-Coefficient d'interaction particule-paire de particules)/(Distance entre les surfaces^6)
Masse molaire compte tenu du nombre et de la masse volumique
Aller Masse molaire = ([Avaga-no]*Densité de masse)/Densité numérique
Masse Densité donnée Nombre densité
Aller Densité de masse = (Densité numérique*Masse molaire)/[Avaga-no]
Concentration donnée Nombre Densité
Aller Concentration molaire = Densité numérique/[Avaga-no]
Masse d'un seul atome
Aller Masse atomique = Masse moléculaire/[Avaga-no]

20 Formules importantes sur différents modèles de gaz réel Calculatrices

Température critique à l'aide de l'équation de Peng Robinson compte tenu des paramètres réduits et réels
Aller Température réelle du gaz = ((Pression+(((Paramètre de Peng – Robinson a*fonction α)/((Volume molaire^2)+(2*Paramètre Peng – Robinson b*Volume molaire)-(Paramètre Peng – Robinson b^2)))))*((Volume molaire-Paramètre Peng – Robinson b)/[R]))/Température réduite
Température du gaz réel à l'aide de l'équation de Peng Robinson
Aller Température donnée CE = (Pression+(((Paramètre de Peng – Robinson a*fonction α)/((Volume molaire^2)+(2*Paramètre Peng – Robinson b*Volume molaire)-(Paramètre Peng – Robinson b^2)))))*((Volume molaire-Paramètre Peng – Robinson b)/[R])
Pression critique du gaz réel à l'aide de l'équation de Redlich Kwong réduite
Aller Pression critique = Pression/(((3*Température réduite)/(Volume molaire réduit-0.26))-(1/(0.26*sqrt(Température du gaz)*Volume molaire réduit*(Volume molaire réduit+0.26))))
Température critique du gaz réel à l'aide de l'équation de Redlich Kwong réduite
Aller Température critique étant donné RKE = Température du gaz/(((Pression réduite+(1/(0.26*Volume molaire réduit*(Volume molaire réduit+0.26))))*((Volume molaire réduit-0.26)/3))^(2/3))
Température réelle du gaz réel à l'aide de l'équation Redlich Kwong réduite
Aller Température du gaz = Température critique*(((Pression réduite+(1/(0.26*Volume molaire réduit*(Volume molaire réduit+0.26))))*((Volume molaire réduit-0.26)/3))^(2/3))
Pression réduite donnée Peng Robinson Paramètre b, autres paramètres réels et réduits
Aller Pression critique compte tenu du PRP = Pression/(0.07780*[R]*(Température du gaz/Température réduite)/Paramètre Peng – Robinson b)
Température réduite à l'aide de l'équation de Redlich Kwong donnée de 'a' et 'b'
Aller Température donnée PRP = Température du gaz/((3^(2/3))*(((2^(1/3))-1)^(4/3))*((Paramètre de Redlich–Kwong a/(Paramètre b de Redlich – Kwong*[R]))^(2/3)))
Coefficient de Hamaker
Aller Coefficient de Hamaker A = (pi^2)*Coefficient d'interaction particule-paire de particules*Nombre Densité de la particule 1*Nombre Densité de la particule 2
Pression critique compte tenu du paramètre b de Peng Robinson et d'autres paramètres réels et réduits
Aller Pression critique compte tenu du PRP = 0.07780*[R]*(Température du gaz/Température réduite)/Paramètre Peng – Robinson b
Température réelle du gaz réel à l'aide de l'équation de Redlich Kwong donnée 'b'
Aller Température réelle du gaz = Température réduite*((Paramètre b de Redlich – Kwong*Pression critique)/(0.08664*[R]))
Température réelle compte tenu du paramètre b de Peng Robinson, autres paramètres réduits et critiques
Aller Température donnée PRP = Température réduite*((Paramètre Peng – Robinson b*Pression critique)/(0.07780*[R]))
Température réduite compte tenu du paramètre a de Peng Robinson et d'autres paramètres réels et critiques
Aller Température du gaz = Température/(sqrt((Paramètre de Peng – Robinson a*Pression critique)/(0.45724*([R]^2))))
Pression réelle donnée Peng Robinson Paramètre a, et d'autres paramètres réduits et critiques
Aller Pression donnée au PRP = Pression réduite*(0.45724*([R]^2)*(Température critique^2)/Paramètre de Peng – Robinson a)
Température critique du gaz réel à l'aide de l'équation de Redlich Kwong donnée 'b'
Aller Température critique étant donné RKE et b = (Paramètre b de Redlich – Kwong*Pression critique)/(0.08664*[R])
Rayon du corps sphérique 1 étant donné la distance centre à centre
Aller Rayon du corps sphérique 1 = Distance centre à centre-Distance entre les surfaces-Rayon du corps sphérique 2
Rayon du corps sphérique 2 étant donné la distance centre à centre
Aller Rayon du corps sphérique 2 = Distance centre à centre-Distance entre les surfaces-Rayon du corps sphérique 1
Distance entre les surfaces donnée Distance centre à centre
Aller Distance entre les surfaces = Distance centre à centre-Rayon du corps sphérique 1-Rayon du corps sphérique 2
Distance centre à centre
Aller Distance centre à centre = Rayon du corps sphérique 1+Rayon du corps sphérique 2+Distance entre les surfaces
Paramètre de Redlich Kwong b au point critique
Aller Paramètre b = (0.08664*[R]*Température critique)/Pression critique
Peng Robinson Paramètre b du gaz réel étant donné les paramètres critiques
Aller Paramètre b = 0.07780*[R]*Température critique/Pression critique

Rayon du corps sphérique 2 étant donné la distance centre à centre Formule

Rayon du corps sphérique 2 = Distance centre à centre-Distance entre les surfaces-Rayon du corps sphérique 1
R2 = z-r-R1

Quelles sont les principales caractéristiques des forces de Van der Waals?

1) Ils sont plus faibles que les liaisons covalentes et ioniques normales. 2) Les forces de Van der Waals sont additives et ne peuvent pas être saturées. 3) Ils n'ont pas de caractéristique directionnelle. 4) Ce sont toutes des forces à courte portée et, par conséquent, seules les interactions entre les particules les plus proches doivent être prises en compte (au lieu de toutes les particules). L'attraction de Van der Waals est plus grande si les molécules sont plus proches. 5) Les forces de Van der Waals sont indépendantes de la température, sauf pour les interactions dipôle-dipôle.

Let Others Know
Facebook
Twitter
Reddit
LinkedIn
Email
WhatsApp
Copied!