Rayon du corps sphérique 2 étant donné l'énergie potentielle dans la limite d'approche la plus proche Solution

ÉTAPE 0: Résumé du pré-calcul
Formule utilisée
Rayon du corps sphérique 2 = 1/((-Coefficient de Hamaker/(Énergie potentielle*6*Distance entre les surfaces))-(1/Rayon du corps sphérique 1))
R2 = 1/((-A/(PE*6*r))-(1/R1))
Cette formule utilise 5 Variables
Variables utilisées
Rayon du corps sphérique 2 - (Mesuré en Mètre) - Rayon du corps sphérique 2 représenté par R1.
Coefficient de Hamaker - (Mesuré en Joule) - Le coefficient de Hamaker A peut être défini pour une interaction corps-corps de Van der Waals.
Énergie potentielle - (Mesuré en Joule) - L'énergie potentielle est l'énergie stockée dans un objet en raison de sa position par rapport à une position zéro.
Distance entre les surfaces - (Mesuré en Mètre) - La distance entre les surfaces est la longueur du segment de ligne entre les 2 surfaces.
Rayon du corps sphérique 1 - (Mesuré en Mètre) - Rayon du corps sphérique 1 représenté par R1.
ÉTAPE 1: Convertir les entrées en unité de base
Coefficient de Hamaker: 100 Joule --> 100 Joule Aucune conversion requise
Énergie potentielle: 4 Joule --> 4 Joule Aucune conversion requise
Distance entre les surfaces: 10 Angstrom --> 1E-09 Mètre (Vérifiez la conversion ici)
Rayon du corps sphérique 1: 12 Angstrom --> 1.2E-09 Mètre (Vérifiez la conversion ici)
ÉTAPE 2: Évaluer la formule
Remplacement des valeurs d'entrée dans la formule
R2 = 1/((-A/(PE*6*r))-(1/R1)) --> 1/((-100/(4*6*1E-09))-(1/1.2E-09))
Évaluer ... ...
R2 = -2E-10
ÉTAPE 3: Convertir le résultat en unité de sortie
-2E-10 Mètre -->-2 Angstrom (Vérifiez la conversion ici)
RÉPONSE FINALE
-2 Angstrom <-- Rayon du corps sphérique 2
(Calcul effectué en 00.004 secondes)

Crédits

Créé par Prerana Bakli
Université d'Hawaï à Mānoa (UH Manoa), Hawaï, États-Unis
Prerana Bakli a créé cette calculatrice et 800+ autres calculatrices!
Vérifié par Prashant Singh
Collège des sciences KJ Somaiya (KJ Somaiya), Bombay
Prashant Singh a validé cette calculatrice et 500+ autres calculatrices!

21 Force de Van der Waals Calculatrices

Énergie d'interaction de Van der Waals entre deux corps sphériques
Aller Énergie d'interaction de Van der Waals = (-(Coefficient de Hamaker/6))*(((2*Rayon du corps sphérique 1*Rayon du corps sphérique 2)/((Distance centre à centre^2)-((Rayon du corps sphérique 1+Rayon du corps sphérique 2)^2)))+((2*Rayon du corps sphérique 1*Rayon du corps sphérique 2)/((Distance centre à centre^2)-((Rayon du corps sphérique 1-Rayon du corps sphérique 2)^2)))+ln(((Distance centre à centre^2)-((Rayon du corps sphérique 1+Rayon du corps sphérique 2)^2))/((Distance centre à centre^2)-((Rayon du corps sphérique 1-Rayon du corps sphérique 2)^2))))
Distance entre les surfaces étant donné la force de Van Der Waals entre deux sphères
Aller Distance entre les surfaces = sqrt((Coefficient de Hamaker*Rayon du corps sphérique 1*Rayon du corps sphérique 2)/((Rayon du corps sphérique 1+Rayon du corps sphérique 2)*6*Énergie potentielle))
Force de Van der Waals entre deux sphères
Aller Force de Van der Waals = (Coefficient de Hamaker*Rayon du corps sphérique 1*Rayon du corps sphérique 2)/((Rayon du corps sphérique 1+Rayon du corps sphérique 2)*6*(Distance entre les surfaces^2))
Distance entre les surfaces compte tenu de l'énergie potentielle dans la limite d'approche rapprochée
Aller Distance entre les surfaces = (-Coefficient de Hamaker*Rayon du corps sphérique 1*Rayon du corps sphérique 2)/((Rayon du corps sphérique 1+Rayon du corps sphérique 2)*6*Énergie potentielle)
Énergie potentielle dans la limite d'approche la plus proche
Aller Énergie potentielle = (-Coefficient de Hamaker*Rayon du corps sphérique 1*Rayon du corps sphérique 2)/((Rayon du corps sphérique 1+Rayon du corps sphérique 2)*6*Distance entre les surfaces)
Rayon du corps sphérique 1 compte tenu de la force de Van der Waals entre deux sphères
Aller Rayon du corps sphérique 1 = 1/((Coefficient de Hamaker/(Force de Van der Waals*6*(Distance entre les surfaces^2)))-(1/Rayon du corps sphérique 2))
Rayon du corps sphérique 2 étant donné la force de Van Der Waals entre deux sphères
Aller Rayon du corps sphérique 2 = 1/((Coefficient de Hamaker/(Force de Van der Waals*6*(Distance entre les surfaces^2)))-(1/Rayon du corps sphérique 1))
Rayon du corps sphérique 1 étant donné l'énergie potentielle dans la limite d'approche la plus proche
Aller Rayon du corps sphérique 1 = 1/((-Coefficient de Hamaker/(Énergie potentielle*6*Distance entre les surfaces))-(1/Rayon du corps sphérique 2))
Rayon du corps sphérique 2 étant donné l'énergie potentielle dans la limite d'approche la plus proche
Aller Rayon du corps sphérique 2 = 1/((-Coefficient de Hamaker/(Énergie potentielle*6*Distance entre les surfaces))-(1/Rayon du corps sphérique 1))
Coefficient d'interaction particule-paire de particules
Aller Coefficient d'interaction particule-paire de particules = Coefficient de Hamaker/((pi^2)*Nombre Densité de la particule 1*Nombre Densité de la particule 2)
Rayon du corps sphérique 1 étant donné la distance centre à centre
Aller Rayon du corps sphérique 1 = Distance centre à centre-Distance entre les surfaces-Rayon du corps sphérique 2
Rayon du corps sphérique 2 étant donné la distance centre à centre
Aller Rayon du corps sphérique 2 = Distance centre à centre-Distance entre les surfaces-Rayon du corps sphérique 1
Distance entre les surfaces donnée Distance centre à centre
Aller Distance entre les surfaces = Distance centre à centre-Rayon du corps sphérique 1-Rayon du corps sphérique 2
Distance centre à centre
Aller Distance centre à centre = Rayon du corps sphérique 1+Rayon du corps sphérique 2+Distance entre les surfaces
Distance entre les surfaces étant donné le potentiel de paire de Van Der Waals
Aller Distance entre les surfaces = ((0-Coefficient d'interaction particule-paire de particules)/Potentiel de paire de Van der Waals)^(1/6)
Coefficient d'interaction de paire particule-particule compte tenu du potentiel de paire de Van der Waals
Aller Coefficient d'interaction particule-paire de particules = (-1*Potentiel de paire de Van der Waals)*(Distance entre les surfaces^6)
Potentiel de paire de Van Der Waals
Aller Potentiel de paire de Van der Waals = (0-Coefficient d'interaction particule-paire de particules)/(Distance entre les surfaces^6)
Masse molaire compte tenu du nombre et de la masse volumique
Aller Masse molaire = ([Avaga-no]*Densité de masse)/Densité numérique
Masse Densité donnée Nombre densité
Aller Densité de masse = (Densité numérique*Masse molaire)/[Avaga-no]
Concentration donnée Nombre Densité
Aller Concentration molaire = Densité numérique/[Avaga-no]
Masse d'un seul atome
Aller Masse atomique = Masse moléculaire/[Avaga-no]

Rayon du corps sphérique 2 étant donné l'énergie potentielle dans la limite d'approche la plus proche Formule

Rayon du corps sphérique 2 = 1/((-Coefficient de Hamaker/(Énergie potentielle*6*Distance entre les surfaces))-(1/Rayon du corps sphérique 1))
R2 = 1/((-A/(PE*6*r))-(1/R1))

Quelles sont les principales caractéristiques des forces de Van der Waals?

1) Ils sont plus faibles que les liaisons covalentes et ioniques normales. 2) Les forces de Van der Waals sont additives et ne peuvent pas être saturées. 3) Ils n'ont pas de caractéristique directionnelle. 4) Ce sont toutes des forces à courte portée et, par conséquent, seules les interactions entre les particules les plus proches doivent être prises en compte (au lieu de toutes les particules). L'attraction de Van der Waals est plus grande si les molécules sont plus proches. 5) Les forces de Van der Waals sont indépendantes de la température, sauf pour les interactions dipôle-dipôle.

Let Others Know
Facebook
Twitter
Reddit
LinkedIn
Email
WhatsApp
Copied!