Vettore di distanza interparticellare nella dinamica di reazione molecolare Soluzione

FASE 0: Riepilogo pre-calcolo
Formula utilizzata
Vettore di distanza interparticellare = sqrt(Energia totale prima della collisione*(Miss Distanza^2)/Energia centrifuga)
R = sqrt(ET*(b^2)/Ecentrifugal)
Questa formula utilizza 1 Funzioni, 4 Variabili
Funzioni utilizzate
sqrt - Funkcja pierwiastka kwadratowego to funkcja, która jako dane wejściowe przyjmuje liczbę nieujemną i zwraca pierwiastek kwadratowy z podanej liczby wejściowej., sqrt(Number)
Variabili utilizzate
Vettore di distanza interparticellare - Il vettore di distanza interparticellare è il vettore di distanza medio tra le particelle microscopiche (solitamente atomi o molecole) in un corpo macroscopico.
Energia totale prima della collisione - (Misurato in Joule) - L'energia totale prima della collisione è la proprietà quantitativa che deve essere trasferita a un corpo o sistema fisico per eseguire la collisione.
Miss Distanza - Miss Distance è definita in modo che sia la distanza l'una dall'altra le particelle A e B si avvicinano, quando non c'è forza che agisce tra di loro.
Energia centrifuga - (Misurato in Joule) - L'energia centrifuga è l'energia relativa a una particella che si muove su un percorso circolare.
PASSAGGIO 1: conversione degli ingressi in unità di base
Energia totale prima della collisione: 1.55 Joule --> 1.55 Joule Nessuna conversione richiesta
Miss Distanza: 4 --> Nessuna conversione richiesta
Energia centrifuga: 8 Joule --> 8 Joule Nessuna conversione richiesta
FASE 2: valutare la formula
Sostituzione dei valori di input nella formula
R = sqrt(ET*(b^2)/Ecentrifugal) --> sqrt(1.55*(4^2)/8)
Valutare ... ...
R = 1.7606816861659
PASSAGGIO 3: conversione del risultato nell'unità di output
1.7606816861659 --> Nessuna conversione richiesta
RISPOSTA FINALE
1.7606816861659 1.760682 <-- Vettore di distanza interparticellare
(Calcolo completato in 00.004 secondi)

Titoli di coda

Creato da Soupayan banerjee
Università Nazionale di Scienze Giudiziarie (NUJS), Calcutta
Soupayan banerjee ha creato questa calcolatrice e altre 200+ altre calcolatrici!
Verificato da Pratibha
Istituto di scienze applicate dell'amicizia (AIAS, Amity University), Noida, India
Pratibha ha verificato questa calcolatrice e altre 50+ altre calcolatrici!

19 Dinamica delle reazioni molecolari Calcolatrici

Sezione trasversale di collisione nel gas ideale
Partire Sezione trasversale di collisione = (Frequenza di collisione/Densità numerica per molecole A*Densità numerica per molecole B)*sqrt(pi*Massa ridotta dei reagenti A e B/8*[BoltZ]*La temperatura in termini di dinamica molecolare)
Frequenza di collisione nel gas ideale
Partire Frequenza di collisione = Densità numerica per molecole A*Densità numerica per molecole B*Sezione trasversale di collisione*sqrt((8*[BoltZ]*Tempo in termini di Gas Ideale/pi*Massa ridotta dei reagenti A e B))
Massa di reagenti ridotta utilizzando la frequenza di collisione
Partire Massa ridotta dei reagenti A e B = ((Densità numerica per molecole A*Densità numerica per molecole B*Sezione trasversale di collisione/Frequenza di collisione)^2)*(8*[BoltZ]*La temperatura in termini di dinamica molecolare/pi)
Temperatura della particella molecolare usando il tasso di collisione
Partire La temperatura in termini di dinamica molecolare = (3*Viscosità del fluido in Quantum*Numero di collisioni al secondo)/(8* [BoltZ]*Concentrazione di particelle di uguale dimensione in soluzione)
Numero di collisioni al secondo in particelle di uguale dimensione
Partire Numero di collisioni al secondo = ((8*[BoltZ]*La temperatura in termini di dinamica molecolare*Concentrazione di particelle di uguale dimensione in soluzione)/(3*Viscosità del fluido in Quantum))
Concentrazione di particelle di uguale dimensione in soluzione utilizzando il tasso di collisione
Partire Concentrazione di particelle di uguale dimensione in soluzione = (3*Viscosità del fluido in Quantum*Numero di collisioni al secondo)/(8*[BoltZ]*La temperatura in termini di dinamica molecolare)
Viscosità della soluzione usando il tasso di collisione
Partire Viscosità del fluido in Quantum = (8*[BoltZ]*La temperatura in termini di dinamica molecolare*Concentrazione di particelle di uguale dimensione in soluzione)/(3*Numero di collisioni al secondo)
Area della sezione trasversale utilizzando il tasso di collisioni molecolari
Partire Area della sezione trasversale per Quantum = Frequenza di collisione/(Velocità delle molecole del fascio*Densità numerica per molecole B*Densità numerica per molecole A)
Densità numerica per molecole A usando la costante del tasso di collisione
Partire Densità numerica per molecole A = Frequenza di collisione/(Velocità delle molecole del fascio*Densità numerica per molecole B*Area della sezione trasversale per Quantum)
Numero di collisioni bimolecolari per unità di tempo per unità di volume
Partire Frequenza di collisione = Densità numerica per molecole A*Densità numerica per molecole B*Velocità delle molecole del fascio*Area della sezione trasversale per Quantum
Miss Distanza tra le particelle in collisione
Partire Miss Distanza = sqrt(((Vettore di distanza interparticellare^2)*Energia centrifuga)/Energia totale prima della collisione)
Massa ridotta dei reagenti A e B
Partire Massa ridotta dei reagenti A e B = (Massa del reagente B*Massa del reagente B)/(Massa del reagente A+Massa del reagente B)
Vettore di distanza interparticellare nella dinamica di reazione molecolare
Partire Vettore di distanza interparticellare = sqrt(Energia totale prima della collisione*(Miss Distanza^2)/Energia centrifuga)
Energia totale prima della collisione
Partire Energia totale prima della collisione = Energia centrifuga*(Vettore di distanza interparticellare^2)/(Miss Distanza^2)
Energia centrifuga in collisione
Partire Energia centrifuga = Energia totale prima della collisione*(Miss Distanza^2)/(Vettore di distanza interparticellare^2)
Sezione trasversale di collisione
Partire Sezione trasversale di collisione = pi*((Raggio della molecola A*Raggio della molecola B)^2)
Frequenza vibrazionale data la costante di Boltzmann
Partire Frequenza vibrazionale = ([BoltZ]*La temperatura in termini di dinamica molecolare)/[hP]
La più grande separazione di carica in collisione
Partire La più grande separazione della carica = sqrt(Sezione trasversale di reazione/pi)
Sezione d'urto di reazione in collisione
Partire Sezione trasversale di reazione = pi*(La più grande separazione della carica^2)

Vettore di distanza interparticellare nella dinamica di reazione molecolare Formula

Vettore di distanza interparticellare = sqrt(Energia totale prima della collisione*(Miss Distanza^2)/Energia centrifuga)
R = sqrt(ET*(b^2)/Ecentrifugal)
Let Others Know
Facebook
Twitter
Reddit
LinkedIn
Email
WhatsApp
Copied!