Temperatura della particella molecolare usando il tasso di collisione Soluzione

FASE 0: Riepilogo pre-calcolo
Formula utilizzata
La temperatura in termini di dinamica molecolare = (3*Viscosità del fluido in Quantum*Numero di collisioni al secondo)/(8* [BoltZ]*Concentrazione di particelle di uguale dimensione in soluzione)
T = (3*μ*v)/(8* [BoltZ]*n)
Questa formula utilizza 1 Costanti, 4 Variabili
Costanti utilizzate
[BoltZ] - Stała Boltzmanna Valore preso come 1.38064852E-23
Variabili utilizzate
La temperatura in termini di dinamica molecolare - (Misurato in Kelvin) - La temperatura in termini di dinamica molecolare è il grado o l'intensità del calore presente in una molecola durante la collisione.
Viscosità del fluido in Quantum - (Misurato in pascal secondo) - La viscosità del fluido in Quantum è una misura della sua resistenza alla deformazione a una data velocità nella meccanica quantistica.
Numero di collisioni al secondo - (Misurato in 1 al secondo) - Il numero di collisioni al secondo è il tasso di collisioni tra due specie atomiche o molecolari in un dato volume, per unità di tempo.
Concentrazione di particelle di uguale dimensione in soluzione - (Misurato in Mole per metro cubo) - La concentrazione di particelle di uguali dimensioni in soluzione è la concentrazione molare di particelle di uguali dimensioni in qualsiasi fase durante l'andamento della reazione.
PASSAGGIO 1: conversione degli ingressi in unità di base
Viscosità del fluido in Quantum: 6.5 Newton secondo per metro quadrato --> 6.5 pascal secondo (Controlla la conversione qui)
Numero di collisioni al secondo: 20 1 al secondo --> 20 1 al secondo Nessuna conversione richiesta
Concentrazione di particelle di uguale dimensione in soluzione: 9 Millimole per centimetro cubo --> 9000 Mole per metro cubo (Controlla la conversione qui)
FASE 2: valutare la formula
Sostituzione dei valori di input nella formula
T = (3*μ*v)/(8* [BoltZ]*n) --> (3*6.5*20)/(8* [BoltZ]*9000)
Valutare ... ...
T = 3.92327706016493E+20
PASSAGGIO 3: conversione del risultato nell'unità di output
3.92327706016493E+20 Kelvin --> Nessuna conversione richiesta
RISPOSTA FINALE
3.92327706016493E+20 3.9E+20 Kelvin <-- La temperatura in termini di dinamica molecolare
(Calcolo completato in 00.020 secondi)

Titoli di coda

Creato da Soupayan banerjee
Università Nazionale di Scienze Giudiziarie (NUJS), Calcutta
Soupayan banerjee ha creato questa calcolatrice e altre 200+ altre calcolatrici!
Verificato da Prerana Bakli
Università delle Hawai'i a Mānoa (UH Manoa), Hawaii, Stati Uniti
Prerana Bakli ha verificato questa calcolatrice e altre 1600+ altre calcolatrici!

19 Dinamica delle reazioni molecolari Calcolatrici

Sezione trasversale di collisione nel gas ideale
Partire Sezione trasversale di collisione = (Frequenza di collisione/Densità numerica per molecole A*Densità numerica per molecole B)*sqrt(pi*Massa ridotta dei reagenti A e B/8*[BoltZ]*La temperatura in termini di dinamica molecolare)
Frequenza di collisione nel gas ideale
Partire Frequenza di collisione = Densità numerica per molecole A*Densità numerica per molecole B*Sezione trasversale di collisione*sqrt((8*[BoltZ]*Tempo in termini di Gas Ideale/pi*Massa ridotta dei reagenti A e B))
Massa di reagenti ridotta utilizzando la frequenza di collisione
Partire Massa ridotta dei reagenti A e B = ((Densità numerica per molecole A*Densità numerica per molecole B*Sezione trasversale di collisione/Frequenza di collisione)^2)*(8*[BoltZ]*La temperatura in termini di dinamica molecolare/pi)
Temperatura della particella molecolare usando il tasso di collisione
Partire La temperatura in termini di dinamica molecolare = (3*Viscosità del fluido in Quantum*Numero di collisioni al secondo)/(8* [BoltZ]*Concentrazione di particelle di uguale dimensione in soluzione)
Numero di collisioni al secondo in particelle di uguale dimensione
Partire Numero di collisioni al secondo = ((8*[BoltZ]*La temperatura in termini di dinamica molecolare*Concentrazione di particelle di uguale dimensione in soluzione)/(3*Viscosità del fluido in Quantum))
Concentrazione di particelle di uguale dimensione in soluzione utilizzando il tasso di collisione
Partire Concentrazione di particelle di uguale dimensione in soluzione = (3*Viscosità del fluido in Quantum*Numero di collisioni al secondo)/(8*[BoltZ]*La temperatura in termini di dinamica molecolare)
Viscosità della soluzione usando il tasso di collisione
Partire Viscosità del fluido in Quantum = (8*[BoltZ]*La temperatura in termini di dinamica molecolare*Concentrazione di particelle di uguale dimensione in soluzione)/(3*Numero di collisioni al secondo)
Area della sezione trasversale utilizzando il tasso di collisioni molecolari
Partire Area della sezione trasversale per Quantum = Frequenza di collisione/(Velocità delle molecole del fascio*Densità numerica per molecole B*Densità numerica per molecole A)
Densità numerica per molecole A usando la costante del tasso di collisione
Partire Densità numerica per molecole A = Frequenza di collisione/(Velocità delle molecole del fascio*Densità numerica per molecole B*Area della sezione trasversale per Quantum)
Numero di collisioni bimolecolari per unità di tempo per unità di volume
Partire Frequenza di collisione = Densità numerica per molecole A*Densità numerica per molecole B*Velocità delle molecole del fascio*Area della sezione trasversale per Quantum
Miss Distanza tra le particelle in collisione
Partire Miss Distanza = sqrt(((Vettore di distanza interparticellare^2)*Energia centrifuga)/Energia totale prima della collisione)
Massa ridotta dei reagenti A e B
Partire Massa ridotta dei reagenti A e B = (Massa del reagente B*Massa del reagente B)/(Massa del reagente A+Massa del reagente B)
Vettore di distanza interparticellare nella dinamica di reazione molecolare
Partire Vettore di distanza interparticellare = sqrt(Energia totale prima della collisione*(Miss Distanza^2)/Energia centrifuga)
Energia totale prima della collisione
Partire Energia totale prima della collisione = Energia centrifuga*(Vettore di distanza interparticellare^2)/(Miss Distanza^2)
Energia centrifuga in collisione
Partire Energia centrifuga = Energia totale prima della collisione*(Miss Distanza^2)/(Vettore di distanza interparticellare^2)
Sezione trasversale di collisione
Partire Sezione trasversale di collisione = pi*((Raggio della molecola A*Raggio della molecola B)^2)
Frequenza vibrazionale data la costante di Boltzmann
Partire Frequenza vibrazionale = ([BoltZ]*La temperatura in termini di dinamica molecolare)/[hP]
La più grande separazione di carica in collisione
Partire La più grande separazione della carica = sqrt(Sezione trasversale di reazione/pi)
Sezione d'urto di reazione in collisione
Partire Sezione trasversale di reazione = pi*(La più grande separazione della carica^2)

Temperatura della particella molecolare usando il tasso di collisione Formula

La temperatura in termini di dinamica molecolare = (3*Viscosità del fluido in Quantum*Numero di collisioni al secondo)/(8* [BoltZ]*Concentrazione di particelle di uguale dimensione in soluzione)
T = (3*μ*v)/(8* [BoltZ]*n)
Let Others Know
Facebook
Twitter
Reddit
LinkedIn
Email
WhatsApp
Copied!