Stała ebullioskopowa przy danej wysokości w temperaturze wrzenia Rozwiązanie

KROK 0: Podsumowanie wstępnych obliczeń
Formułę używana
Stała ebulioskopowa rozpuszczalnika = Podwyższenie punktu wrzenia/(Czynnik Van't Hoffa*Molalność)
kb = ΔTb/(i*m)
Ta formuła używa 4 Zmienne
Używane zmienne
Stała ebulioskopowa rozpuszczalnika - (Mierzone w Kilogram Kelvina na mol) - Stała ebulioskopowa rozpuszczalnika wiąże molalność z podniesieniem temperatury wrzenia.
Podwyższenie punktu wrzenia - (Mierzone w kelwin) - Podwyższenie temperatury wrzenia odnosi się do wzrostu temperatury wrzenia rozpuszczalnika po dodaniu substancji rozpuszczonej.
Czynnik Van't Hoffa - Czynnik Van't Hoffa to stosunek obserwowanej właściwości koligatywnej do teoretycznej właściwości koligatywnej.
Molalność - (Mierzone w Kret / kilogram) - Molalność definiuje się jako całkowitą liczbę moli substancji rozpuszczonej na kilogram rozpuszczalnika obecnego w roztworze.
KROK 1: Zamień wejście (a) na jednostkę bazową
Podwyższenie punktu wrzenia: 0.99 kelwin --> 0.99 kelwin Nie jest wymagana konwersja
Czynnik Van't Hoffa: 1.008 --> Nie jest wymagana konwersja
Molalność: 1.79 Kret / kilogram --> 1.79 Kret / kilogram Nie jest wymagana konwersja
KROK 2: Oceń formułę
Zastępowanie wartości wejściowych we wzorze
kb = ΔTb/(i*m) --> 0.99/(1.008*1.79)
Ocenianie ... ...
kb = 0.548683160415004
KROK 3: Konwertuj wynik na jednostkę wyjścia
0.548683160415004 Kilogram Kelvina na mol --> Nie jest wymagana konwersja
OSTATNIA ODPOWIEDŹ
0.548683160415004 0.548683 Kilogram Kelvina na mol <-- Stała ebulioskopowa rozpuszczalnika
(Obliczenie zakończone za 00.004 sekund)

Kredyty

Stworzone przez Prerana Bakli
Uniwersytet Hawajski w Mānoa (UH Manoa), Hawaje, USA
Prerana Bakli utworzył ten kalkulator i 800+ więcej kalkulatorów!
Zweryfikowane przez Akshada Kulkarni
Narodowy Instytut Informatyki (NIIT), Neemrana
Akshada Kulkarni zweryfikował ten kalkulator i 900+ więcej kalkulatorów!

24 Podniesienie punktu wrzenia Kalkulatory

Wysokość temperatury wrzenia przy ciśnieniu pary
Iść Podwyższenie punktu wrzenia = ((Prężność par czystego rozpuszczalnika-Prężność par rozpuszczalnika w roztworze)*[R]*(Temperatura wrzenia rozpuszczalnika^2))/(Entalpia molowa waporyzacji*Prężność par czystego rozpuszczalnika)
Wysokość w punkcie wrzenia przy obniżeniu w punkcie zamarzania
Iść Podwyższenie punktu wrzenia = (Entalpia trzonowa fuzji*Depresja w punkcie zamarzania*(Temperatura wrzenia rozpuszczalnika^2))/(Entalpia molowa waporyzacji*(Punkt zamarzania rozpuszczalnika^2))
Stała ebullioskopowa z wykorzystaniem entalpii molowej parowania
Iść Stała ebulioskopowa rozpuszczalnika = ([R]*Temperatura wrzenia rozpuszczalnika*Temperatura wrzenia rozpuszczalnika*Masa molowa rozpuszczalnika)/(1000*Entalpia molowa waporyzacji)
Względne obniżenie ciśnienia pary przy podniesieniu temperatury wrzenia
Iść Względne obniżenie ciśnienia pary = (Entalpia molowa waporyzacji*Podwyższenie punktu wrzenia)/([R]*Temperatura wrzenia rozpuszczalnika*Temperatura wrzenia rozpuszczalnika)
Temperatura wrzenia rozpuszczalnika podana stała ebullioskopowa i entalpia molowa parowania
Iść Temperatura wrzenia rozpuszczalnika = sqrt((Stała ebulioskopowa rozpuszczalnika*1000*Entalpia molowa waporyzacji)/([R]*Masa molowa rozpuszczalnika))
Ciśnienie osmotyczne przy danej wysokości w temperaturze wrzenia
Iść Ciśnienie osmotyczne = (Entalpia molowa waporyzacji*Podwyższenie punktu wrzenia*Temperatura)/((Temperatura wrzenia rozpuszczalnika^2)*Objętość molowa)
Wysokość temperatury wrzenia przy ciśnieniu osmotycznym
Iść Podwyższenie punktu wrzenia = (Ciśnienie osmotyczne*Objętość molowa*(Temperatura wrzenia rozpuszczalnika^2))/(Temperatura*Entalpia molowa waporyzacji)
Temperatura wrzenia rozpuszczalnika na wysokości punktu wrzenia
Iść Temperatura wrzenia rozpuszczalnika = sqrt((Molowa stała podniesienia temperatury wrzenia*Molowe ciepło parowania*1000)/([R]*Waga molekularna))
Ciepło utajone parowania podane Temperatura wrzenia rozpuszczalnika
Iść Ciepło utajone parowania = ([R]*Temperatura wrzenia rozpuszczalnika*Temperatura wrzenia rozpuszczalnika)/(1000*Stała ebulioskopowa rozpuszczalnika)
Molowa entalpia parowania przy danej temperaturze wrzenia rozpuszczalnika
Iść Entalpia molowa waporyzacji = ([R]*(Temperatura wrzenia rozpuszczalnika^2)*Masa molowa rozpuszczalnika)/(1000*Stała ebulioskopowa rozpuszczalnika)
Masa molowa rozpuszczalnika podana stała ebullioskopowa
Iść Masa molowa rozpuszczalnika = (1000*Stała ebulioskopowa rozpuszczalnika*Entalpia molowa waporyzacji)/([R]*(Temperatura wrzenia rozpuszczalnika^2))
Masa cząsteczkowa rozpuszczalnika w elewacji punktu wrzenia
Iść Waga molekularna = (Molowa stała podniesienia temperatury wrzenia*Molowe ciepło parowania*1000)/([R]*(Temperatura wrzenia rozpuszczalnika^2))
Wysokość temperatury wrzenia przy względnym obniżeniu ciśnienia pary
Iść Podwyższenie punktu wrzenia = (Względne obniżenie ciśnienia pary*[R]*(Temperatura wrzenia rozpuszczalnika^2))/Entalpia molowa waporyzacji
Temperatura wrzenia rozpuszczalnika podana stała ebullioskopowa i utajone ciepło parowania
Iść Temperatura wrzenia rozpuszczalnika = sqrt((Stała ebulioskopowa rozpuszczalnika*1000*Ciepło utajone parowania)/[R])
Stała ebullioskopowa wykorzystująca ciepło utajone parowania
Iść Stała ebulioskopowa rozpuszczalnika = ([R]*Rozpuszczalnik BP, biorąc pod uwagę utajone ciepło parowania^2)/(1000*Ciepło utajone parowania)
Molowa stała rzędnej temperatury wrzenia przy danej stałej gazu doskonałego
Iść Molowa stała podniesienia temperatury wrzenia = (Uniwersalny stały gaz*(Temperatura wrzenia rozpuszczalnika)^2*Waga molekularna)/(1000)
Współczynnik Van't Hoffa elektrolitu przy podniesieniu temperatury wrzenia
Iść Czynnik Van't Hoffa = Podwyższenie punktu wrzenia/(Stała ebulioskopowa rozpuszczalnika*Molalność)
Stała ebullioskopowa przy danej wysokości w temperaturze wrzenia
Iść Stała ebulioskopowa rozpuszczalnika = Podwyższenie punktu wrzenia/(Czynnik Van't Hoffa*Molalność)
Molalność podana w punkcie wrzenia
Iść Molalność = Podwyższenie punktu wrzenia/(Czynnik Van't Hoffa*Stała ebulioskopowa rozpuszczalnika)
Równanie Van't Hoffa dla podniesienia w temperaturze wrzenia elektrolitu
Iść Podwyższenie punktu wrzenia = Czynnik Van't Hoffa*Stała ebulioskopowa rozpuszczalnika*Molalność
Molowa wysokość punktu wrzenia Stała podana wysokość punktu wrzenia
Iść Molowa stała podniesienia temperatury wrzenia = Podwyższenie punktu wrzenia/Molalność
Molalność przy założeniu rzędnej i stałej temperatury wrzenia
Iść Molalność = Podwyższenie punktu wrzenia/Molowa stała podniesienia temperatury wrzenia
Wysokość punktu wrzenia
Iść Podwyższenie punktu wrzenia = Molowa stała podniesienia temperatury wrzenia*Molalność
Wysokość wrzenia rozpuszczalnika
Iść Podwyższenie punktu wrzenia = Stała ebulioskopowa rozpuszczalnika*Molalność

22 Ważne wzory właściwości koligatywnych Kalkulatory

Ciśnienie osmotyczne podane ciśnienie pary
Iść Ciśnienie osmotyczne = ((Prężność par czystego rozpuszczalnika-Prężność par rozpuszczalnika w roztworze)*[R]*Temperatura)/(Objętość molowa*Prężność par czystego rozpuszczalnika)
Ciśnienie osmotyczne Van't Hoff dla mieszaniny dwóch roztworów
Iść Ciśnienie osmotyczne = ((Współczynnik Van't Hoffa cząstek 1*Stężenie cząstek 1)+(Współczynnik Van't Hoffa cząstek 2*Stężenie cząstek 2))*[R]*Temperatura
Ciśnienie osmotyczne przy depresji w punkcie zamarzania
Iść Ciśnienie osmotyczne = (Molowa entalpia fuzji*Depresja w punkcie zamarzania*Temperatura)/(Objętość molowa*(Temperatura zamarzania rozpuszczalnika^2))
Względne obniżenie ciśnienia pary
Iść Względne obniżenie prężności pary = (Prężność par czystego rozpuszczalnika-Prężność par rozpuszczalnika w roztworze)/Prężność par czystego rozpuszczalnika
Ciśnienie osmotyczne Van't Hoff dla elektrolitu
Iść Ciśnienie osmotyczne = Czynnik Van't Hoffa*Stężenie molowe substancji rozpuszczonej*Uniwersalny stały gaz*Temperatura
Stała ebullioskopowa wykorzystująca ciepło utajone parowania
Iść Stała ebulioskopowa rozpuszczalnika = ([R]*Rozpuszczalnik BP, biorąc pod uwagę utajone ciepło parowania^2)/(1000*Ciepło utajone parowania)
Względne obniżenie ciśnienia pary przy określonej liczbie moli dla stężonego roztworu
Iść Względne obniżenie prężności pary = Liczba moli substancji rozpuszczonej/(Liczba moli substancji rozpuszczonej+Liczba moli rozpuszczalnika)
Dynamiczna metoda Ostwalda-Walkera względnego obniżania ciśnienia pary
Iść Względne obniżenie prężności pary = Utrata masy w zestawie żarówek B/(Ubytek masy w zestawie żarówek A+Utrata masy w zestawie żarówek B)
Van't Hoff Względne Obniżenie Prężności Par ze względu na Masę Molekularną i Molalność
Iść Ciśnienie koligatywne przy danym współczynniku Van't Hoffa = (Czynnik Van't Hoffa*Molalność*Rozpuszczalnik masy cząsteczkowej)/1000
Ciśnienie osmotyczne przy względnym obniżeniu ciśnienia pary
Iść Ciśnienie osmotyczne = (Względne obniżenie prężności pary*[R]*Temperatura)/Objętość molowa
Stała krioskopowa przy utajonym cieple syntezy
Iść Stała krioskopowa = ([R]*Punkt zamarzania rozpuszczalnika dla stałej krioskopowej^2)/(1000*Utajone ciepło topnienia)
Ciśnienie osmotyczne przy danym stężeniu dwóch substancji
Iść Ciśnienie osmotyczne = (Stężenie cząstek 1+Stężenie cząstek 2)*[R]*Temperatura
Stała ebullioskopowa przy danej wysokości w temperaturze wrzenia
Iść Stała ebulioskopowa rozpuszczalnika = Podwyższenie punktu wrzenia/(Czynnik Van't Hoffa*Molalność)
Równanie Van't Hoffa dla podniesienia w temperaturze wrzenia elektrolitu
Iść Podwyższenie punktu wrzenia = Czynnik Van't Hoffa*Stała ebulioskopowa rozpuszczalnika*Molalność
Całkowite stężenie cząstek przy użyciu ciśnienia osmotycznego
Iść Stężenie molowe substancji rozpuszczonej = Ciśnienie osmotyczne/([R]*Temperatura)
Stała krioskopowa przy danej depresji w punkcie zamarzania
Iść Stała krioskopowa = Depresja w punkcie zamarzania/(Czynnik Van't Hoffa*Molalność)
Ciśnienie osmotyczne dla nieelektrolitu
Iść Ciśnienie osmotyczne = Stężenie molowe substancji rozpuszczonej*[R]*Temperatura
Równanie Van't Hoffa dla depresji w punkcie zamarzania elektrolitu
Iść Depresja w punkcie zamarzania = Czynnik Van't Hoffa*Stała krioskopowa*Molalność
Względne obniżenie ciśnienia pary przy określonej liczbie moli dla rozcieńczonego roztworu
Iść Względne obniżenie prężności pary = Liczba moli substancji rozpuszczonej/Liczba moli rozpuszczalnika
Ciśnienie osmotyczne przy danej gęstości roztworu
Iść Ciśnienie osmotyczne = Gęstość roztworu*[g]*Wysokość równowagi
Wysokość punktu wrzenia
Iść Podwyższenie punktu wrzenia = Molowa stała podniesienia temperatury wrzenia*Molalność
Depresja punktu zamarzania
Iść Depresja w punkcie zamarzania = Stała krioskopowa*Molalność

Stała ebullioskopowa przy danej wysokości w temperaturze wrzenia Formułę

Stała ebulioskopowa rozpuszczalnika = Podwyższenie punktu wrzenia/(Czynnik Van't Hoffa*Molalność)
kb = ΔTb/(i*m)

Co oznacza podniesienie punktu wrzenia?

Podwyższenie temperatury wrzenia opisuje zjawisko, w którym temperatura wrzenia cieczy będzie wyższa po dodaniu innego związku, co oznacza, że roztwór ma wyższą temperaturę wrzenia niż czysty rozpuszczalnik. Dzieje się tak, gdy do czystego rozpuszczalnika, takiego jak woda, dodaje się nielotną substancję rozpuszczoną, taką jak sól.

Let Others Know
Facebook
Twitter
Reddit
LinkedIn
Email
WhatsApp
Copied!