Entropia przy danej energii wewnętrznej i swobodnej entropii Helmholtza Rozwiązanie

KROK 0: Podsumowanie wstępnych obliczeń
Formułę używana
Entropia = Wolna entropia Helmholtza+(Energia wewnętrzna/Temperatura)
S = Φ+(U/T)
Ta formuła używa 4 Zmienne
Używane zmienne
Entropia - (Mierzone w Dżul na Kelvin) - Entropia to miara energii cieplnej systemu na jednostkę temperatury, która jest niedostępna do wykonywania użytecznej pracy.
Wolna entropia Helmholtza - (Mierzone w Dżul na Kelvin) - Entropia swobodna Helmholtza służy do wyrażania wpływu sił elektrostatycznych w elektrolicie na jego stan termodynamiczny.
Energia wewnętrzna - (Mierzone w Dżul) - Energia wewnętrzna układu termodynamicznego to energia zawarta w nim. Jest to energia niezbędna do stworzenia lub przygotowania układu w dowolnym stanie wewnętrznym.
Temperatura - (Mierzone w kelwin) - Temperatura to stopień lub intensywność ciepła występującego w substancji lub przedmiocie.
KROK 1: Zamień wejście (a) na jednostkę bazową
Wolna entropia Helmholtza: 70 Dżul na Kelvin --> 70 Dżul na Kelvin Nie jest wymagana konwersja
Energia wewnętrzna: 233.36 Dżul --> 233.36 Dżul Nie jest wymagana konwersja
Temperatura: 298 kelwin --> 298 kelwin Nie jest wymagana konwersja
KROK 2: Oceń formułę
Zastępowanie wartości wejściowych we wzorze
S = Φ+(U/T) --> 70+(233.36/298)
Ocenianie ... ...
S = 70.7830872483221
KROK 3: Konwertuj wynik na jednostkę wyjścia
70.7830872483221 Dżul na Kelvin --> Nie jest wymagana konwersja
OSTATNIA ODPOWIEDŹ
70.7830872483221 70.78309 Dżul na Kelvin <-- Entropia
(Obliczenie zakończone za 00.004 sekund)

Kredyty

Stworzone przez Prashant Singh
KJ Somaiya College of science (KJ Somaiya), Bombaj
Prashant Singh utworzył ten kalkulator i 700+ więcej kalkulatorów!
Zweryfikowane przez Prerana Bakli
Uniwersytet Hawajski w Mānoa (UH Manoa), Hawaje, USA
Prerana Bakli zweryfikował ten kalkulator i 1600+ więcej kalkulatorów!

14 Termodynamika chemiczna Kalkulatory

Objętość podana Gibbsowi i Helmholtzowi Free Entropy
Iść Objętość podana Entropia Gibbsa i Helmholtza = ((Entropia Helmholtza-Swobodna entropia Gibbsa)*Temperatura)/Nacisk
Wolna entropia Gibbsa
Iść Swobodna entropia Gibbsa = Entropia-((Energia wewnętrzna+(Nacisk*Tom))/Temperatura)
Gibbs Free Entropia przyznana Helmholtzowi Free Entropy
Iść Swobodna entropia Gibbsa = Wolna entropia Helmholtza-((Nacisk*Tom)/Temperatura)
Potencjał komórki przy zmianie swobodnej energii Gibbsa
Iść Potencjał komórkowy = -Zmiana energii swobodnej Gibbsa /(Przenoszenie moli elektronów*[Faraday])
Zmiana darmowej energii Gibbsa
Iść Zmiana energii swobodnej Gibbsa = -Liczba moli elektronu*[Faraday]/Potencjał elektrody systemu
Klasyczna część swobodnej entropii Gibbsa podana część elektryczna
Iść Klasyczna część wypycha swobodną entropię = (Entropia swobodna Gibbsa systemu-Część elektryczna wypycha swobodną entropię)
Potencjał elektrody przy swobodnej energii Gibbsa
Iść Potencjał elektrody = -Zmiana energii swobodnej Gibbsa/(Liczba moli elektronu*[Faraday])
Klasyczna część swobodnej entropii Helmholtza podana część elektryczna
Iść Klasyczna swobodna entropia Helmholtza = (Wolna entropia Helmholtza-Elektryczna swobodna entropia Helmholtza)
Wolna entropia Helmholtza
Iść Wolna entropia Helmholtza = (Entropia-(Energia wewnętrzna/Temperatura))
Entropia przy danej energii wewnętrznej i swobodnej entropii Helmholtza
Iść Entropia = Wolna entropia Helmholtza+(Energia wewnętrzna/Temperatura)
Gibbs Free Energy
Iść Darmowa energia Gibbsa = Entalpia-Temperatura*Entropia
Energia swobodna Helmholtza podana entropia swobodna Helmholtza i temperatura
Iść Swobodna energia Helmholtza układu = -(Wolna entropia Helmholtza*Temperatura)
Wolna entropia Helmholtza przy swobodnej energii Helmholtza
Iść Wolna entropia Helmholtza = -(Swobodna energia Helmholtza układu/Temperatura)
Energia swobodna Gibbsa dana swobodna entropia Gibbsa
Iść Darmowa energia Gibbsa = (-Swobodna entropia Gibbsa*Temperatura)

17 Drugie zasady termodynamiki Kalkulatory

Objętość podana Gibbsowi i Helmholtzowi Free Entropy
Iść Objętość podana Entropia Gibbsa i Helmholtza = ((Entropia Helmholtza-Swobodna entropia Gibbsa)*Temperatura)/Nacisk
Gibbs Free Entropia przyznana Helmholtzowi Free Entropy
Iść Swobodna entropia Gibbsa = Wolna entropia Helmholtza-((Nacisk*Tom)/Temperatura)
Ciśnienie podane Gibbsowi i Helmholtzowi w wolnej entropii
Iść Nacisk = ((Wolna entropia Helmholtza-Wolna entropia Gibbsa)*Temperatura)/Tom
Potencjał komórki przy zmianie swobodnej energii Gibbsa
Iść Potencjał komórkowy = -Zmiana energii swobodnej Gibbsa /(Przenoszenie moli elektronów*[Faraday])
Zmiana darmowej energii Gibbsa
Iść Zmiana energii swobodnej Gibbsa = -Liczba moli elektronu*[Faraday]/Potencjał elektrody systemu
Klasyczna część swobodnej entropii Gibbsa podana część elektryczna
Iść Klasyczna część wypycha swobodną entropię = (Entropia swobodna Gibbsa systemu-Część elektryczna wypycha swobodną entropię)
Potencjał elektrody przy swobodnej energii Gibbsa
Iść Potencjał elektrody = -Zmiana energii swobodnej Gibbsa/(Liczba moli elektronu*[Faraday])
Klasyczna część swobodnej entropii Helmholtza podana część elektryczna
Iść Klasyczna swobodna entropia Helmholtza = (Wolna entropia Helmholtza-Elektryczna swobodna entropia Helmholtza)
Elektryczna część swobodnej entropii Helmholtza podana część klasyczna
Iść Elektryczna swobodna entropia Helmholtza = (Wolna entropia Helmholtza-Klasyczna swobodna entropia Helmholtza)
Helmholtz Free Entropy biorąc pod uwagę część klasyczną i elektryczną
Iść Wolna entropia Helmholtza = (Klasyczna swobodna entropia Helmholtza+Elektryczna swobodna entropia Helmholtza)
Wolna entropia Helmholtza
Iść Wolna entropia Helmholtza = (Entropia-(Energia wewnętrzna/Temperatura))
Entropia przy danej energii wewnętrznej i swobodnej entropii Helmholtza
Iść Entropia = Wolna entropia Helmholtza+(Energia wewnętrzna/Temperatura)
Energia wewnętrzna przy danych swobodnej entropii i entropii Helmholtza
Iść Energia wewnętrzna = (Entropia-Wolna entropia Helmholtza)*Temperatura
Gibbs Free Energy
Iść Darmowa energia Gibbsa = Entalpia-Temperatura*Entropia
Energia swobodna Helmholtza podana entropia swobodna Helmholtza i temperatura
Iść Swobodna energia Helmholtza układu = -(Wolna entropia Helmholtza*Temperatura)
Wolna entropia Helmholtza przy swobodnej energii Helmholtza
Iść Wolna entropia Helmholtza = -(Swobodna energia Helmholtza układu/Temperatura)
Energia swobodna Gibbsa dana swobodna entropia Gibbsa
Iść Darmowa energia Gibbsa = (-Swobodna entropia Gibbsa*Temperatura)

Entropia przy danej energii wewnętrznej i swobodnej entropii Helmholtza Formułę

Entropia = Wolna entropia Helmholtza+(Energia wewnętrzna/Temperatura)
S = Φ+(U/T)

Co to jest prawo ograniczające Debye-Huckel?

Chemicy Peter Debye i Erich Hückel zauważyli, że roztwory zawierające jonowe substancje rozpuszczone nie zachowują się idealnie nawet przy bardzo niskich stężeniach. Tak więc, chociaż stężenie substancji rozpuszczonych ma fundamentalne znaczenie dla obliczenia dynamiki roztworu, wysnuli teorię, że dodatkowy czynnik, który nazwali gamma, jest niezbędny do obliczenia współczynników aktywności roztworu. W związku z tym opracowali równanie Debye-Hückel i prawo ograniczające Debye-Hückel. Aktywność jest tylko proporcjonalna do stężenia i jest zmieniana przez czynnik znany jako współczynnik aktywności. Czynnik ten uwzględnia energię interakcji jonów w roztworze.

Let Others Know
Facebook
Twitter
Reddit
LinkedIn
Email
WhatsApp
Copied!