Prawdopodobieństwo wystąpienia dokładnie dwóch zdarzeń przy danym prawdopodobieństwie zdarzeń Rozwiązanie

KROK 0: Podsumowanie wstępnych obliczeń
Formułę używana
Prawdopodobieństwo wystąpienia dokładnie dwóch zdarzeń = ((1-Prawdopodobieństwo zdarzenia A)*Prawdopodobieństwo zdarzenia B*Prawdopodobieństwo zdarzenia C)+(Prawdopodobieństwo zdarzenia A*(1-Prawdopodobieństwo zdarzenia B)*Prawdopodobieństwo zdarzenia C)+(Prawdopodobieństwo zdarzenia A*Prawdopodobieństwo zdarzenia B*(1-Prawdopodobieństwo zdarzenia C))
P(Exactly Two) = ((1-P(A))*P(B)*P(C))+(P(A)*(1-P(B))*P(C))+(P(A)*P(B)*(1-P(C)))
Ta formuła używa 4 Zmienne
Używane zmienne
Prawdopodobieństwo wystąpienia dokładnie dwóch zdarzeń - Prawdopodobieństwo wystąpienia dokładnie dwóch zdarzeń to prawdopodobieństwo, że wystąpią dokładnie dwa z trzech zdarzeń A, B i C, przy zapewnieniu, że wystąpią nie więcej lub mniej niż dwa zdarzenia.
Prawdopodobieństwo zdarzenia A - Prawdopodobieństwo zdarzenia A to prawdopodobieństwo wystąpienia zdarzenia A.
Prawdopodobieństwo zdarzenia B - Prawdopodobieństwo zdarzenia B to prawdopodobieństwo wystąpienia zdarzenia B.
Prawdopodobieństwo zdarzenia C - Prawdopodobieństwo zdarzenia C to prawdopodobieństwo wystąpienia zdarzenia C.
KROK 1: Zamień wejście (a) na jednostkę bazową
Prawdopodobieństwo zdarzenia A: 0.5 --> Nie jest wymagana konwersja
Prawdopodobieństwo zdarzenia B: 0.2 --> Nie jest wymagana konwersja
Prawdopodobieństwo zdarzenia C: 0.8 --> Nie jest wymagana konwersja
KROK 2: Oceń formułę
Zastępowanie wartości wejściowych we wzorze
P(Exactly Two) = ((1-P(A))*P(B)*P(C))+(P(A)*(1-P(B))*P(C))+(P(A)*P(B)*(1-P(C))) --> ((1-0.5)*0.2*0.8)+(0.5*(1-0.2)*0.8)+(0.5*0.2*(1-0.8))
Ocenianie ... ...
P(Exactly Two) = 0.42
KROK 3: Konwertuj wynik na jednostkę wyjścia
0.42 --> Nie jest wymagana konwersja
OSTATNIA ODPOWIEDŹ
0.42 <-- Prawdopodobieństwo wystąpienia dokładnie dwóch zdarzeń
(Obliczenie zakończone za 00.004 sekund)

Kredyty

Stworzone przez Dhruv Walia
Indyjski Instytut Technologii, Indian School of Mines, DHANBAD (IIT ISM), Dhanbad, Jharkhand
Dhruv Walia utworzył ten kalkulator i 1100+ więcej kalkulatorów!
Zweryfikowane przez Nikita Kumari
Narodowy Instytut Inżynierii (NIE), Mysuru
Nikita Kumari zweryfikował ten kalkulator i 600+ więcej kalkulatorów!

10+ Prawdopodobieństwo trzech zdarzeń Kalkulatory

Prawdopodobieństwo wystąpienia co najmniej jednego zdarzenia przy danym prawdopodobieństwie zdarzeń
Iść Prawdopodobieństwo wystąpienia co najmniej jednego zdarzenia = Prawdopodobieństwo zdarzenia A+Prawdopodobieństwo zdarzenia B+Prawdopodobieństwo zdarzenia C-(Prawdopodobieństwo zdarzenia A*Prawdopodobieństwo zdarzenia B)-(Prawdopodobieństwo zdarzenia B*Prawdopodobieństwo zdarzenia C)-(Prawdopodobieństwo zdarzenia C*Prawdopodobieństwo zdarzenia A)+(Prawdopodobieństwo zdarzenia A*Prawdopodobieństwo zdarzenia B*Prawdopodobieństwo zdarzenia C)
Prawdopodobieństwo żadnego ze zdarzeń
Iść Prawdopodobieństwo niewystąpienia dowolnego zdarzenia = 1-(Prawdopodobieństwo zdarzenia A+Prawdopodobieństwo zdarzenia B+Prawdopodobieństwo zdarzenia C-(Prawdopodobieństwo zdarzenia A*Prawdopodobieństwo zdarzenia B)-(Prawdopodobieństwo zdarzenia B*Prawdopodobieństwo zdarzenia C)-(Prawdopodobieństwo zdarzenia C*Prawdopodobieństwo zdarzenia A)+(Prawdopodobieństwo zdarzenia A*Prawdopodobieństwo zdarzenia B*Prawdopodobieństwo zdarzenia C))
Prawdopodobieństwo wystąpienia dokładnie jednego zdarzenia
Iść Prawdopodobieństwo wystąpienia dokładnie jednego zdarzenia = (Prawdopodobieństwo zdarzenia A*Prawdopodobieństwo niewystąpienia zdarzenia B *Prawdopodobieństwo niewystąpienia zdarzenia C)+(Prawdopodobieństwo niewystąpienia zdarzenia A*Prawdopodobieństwo zdarzenia B*Prawdopodobieństwo niewystąpienia zdarzenia C)+(Prawdopodobieństwo niewystąpienia zdarzenia A*Prawdopodobieństwo niewystąpienia zdarzenia B*Prawdopodobieństwo zdarzenia C)
Prawdopodobieństwo wystąpienia dokładnie dwóch zdarzeń
Iść Prawdopodobieństwo wystąpienia dokładnie dwóch zdarzeń = (Prawdopodobieństwo niewystąpienia zdarzenia A*Prawdopodobieństwo zdarzenia B*Prawdopodobieństwo zdarzenia C)+(Prawdopodobieństwo zdarzenia A*Prawdopodobieństwo niewystąpienia zdarzenia B*Prawdopodobieństwo zdarzenia C)+(Prawdopodobieństwo zdarzenia A*Prawdopodobieństwo zdarzenia B *Prawdopodobieństwo niewystąpienia zdarzenia C)
Prawdopodobieństwo wystąpienia dokładnie jednego zdarzenia przy danym prawdopodobieństwie zdarzeń
Iść Prawdopodobieństwo wystąpienia dokładnie jednego zdarzenia = (Prawdopodobieństwo zdarzenia A*(1-Prawdopodobieństwo zdarzenia B) *(1-Prawdopodobieństwo zdarzenia C))+((1-Prawdopodobieństwo zdarzenia A)*Prawdopodobieństwo zdarzenia B*(1-Prawdopodobieństwo zdarzenia C))+((1-Prawdopodobieństwo zdarzenia A)*(1-Prawdopodobieństwo zdarzenia B)*Prawdopodobieństwo zdarzenia C)
Prawdopodobieństwo wystąpienia dokładnie dwóch zdarzeń przy danym prawdopodobieństwie zdarzeń
Iść Prawdopodobieństwo wystąpienia dokładnie dwóch zdarzeń = ((1-Prawdopodobieństwo zdarzenia A)*Prawdopodobieństwo zdarzenia B*Prawdopodobieństwo zdarzenia C)+(Prawdopodobieństwo zdarzenia A*(1-Prawdopodobieństwo zdarzenia B)*Prawdopodobieństwo zdarzenia C)+(Prawdopodobieństwo zdarzenia A*Prawdopodobieństwo zdarzenia B*(1-Prawdopodobieństwo zdarzenia C))
Prawdopodobieństwo wystąpienia co najmniej jednego zdarzenia
Iść Prawdopodobieństwo wystąpienia co najmniej jednego zdarzenia = Prawdopodobieństwo zdarzenia A+Prawdopodobieństwo zdarzenia B+Prawdopodobieństwo zdarzenia C-Prawdopodobieństwo wystąpienia zdarzenia A i zdarzenia B-Prawdopodobieństwo wystąpienia zdarzenia B i zdarzenia C-Prawdopodobieństwo wystąpienia zdarzenia A i zdarzenia C+Prawdopodobieństwo wystąpienia wszystkich trzech zdarzeń
Prawdopodobieństwo wystąpienia co najmniej dwóch zdarzeń
Iść Prawdopodobieństwo wystąpienia co najmniej dwóch zdarzeń = (Prawdopodobieństwo zdarzenia A*Prawdopodobieństwo zdarzenia B)+(Prawdopodobieństwo niewystąpienia zdarzenia A*Prawdopodobieństwo zdarzenia B*Prawdopodobieństwo zdarzenia C)+(Prawdopodobieństwo zdarzenia A *Prawdopodobieństwo niewystąpienia zdarzenia B*Prawdopodobieństwo zdarzenia C)
Prawdopodobieństwo wystąpienia co najmniej dwóch zdarzeń przy danym prawdopodobieństwie zdarzeń
Iść Prawdopodobieństwo wystąpienia co najmniej dwóch zdarzeń = (Prawdopodobieństwo zdarzenia A*Prawdopodobieństwo zdarzenia B)+((1-Prawdopodobieństwo zdarzenia A)*Prawdopodobieństwo zdarzenia B*Prawdopodobieństwo zdarzenia C)+(Prawdopodobieństwo zdarzenia A*(1-Prawdopodobieństwo zdarzenia B)*Prawdopodobieństwo zdarzenia C)
Prawdopodobieństwo wystąpienia wszystkich niezależnych zdarzeń
Iść Prawdopodobieństwo wystąpienia wszystkich trzech zdarzeń = Prawdopodobieństwo zdarzenia A*Prawdopodobieństwo zdarzenia B*Prawdopodobieństwo zdarzenia C

Prawdopodobieństwo wystąpienia dokładnie dwóch zdarzeń przy danym prawdopodobieństwie zdarzeń Formułę

Prawdopodobieństwo wystąpienia dokładnie dwóch zdarzeń = ((1-Prawdopodobieństwo zdarzenia A)*Prawdopodobieństwo zdarzenia B*Prawdopodobieństwo zdarzenia C)+(Prawdopodobieństwo zdarzenia A*(1-Prawdopodobieństwo zdarzenia B)*Prawdopodobieństwo zdarzenia C)+(Prawdopodobieństwo zdarzenia A*Prawdopodobieństwo zdarzenia B*(1-Prawdopodobieństwo zdarzenia C))
P(Exactly Two) = ((1-P(A))*P(B)*P(C))+(P(A)*(1-P(B))*P(C))+(P(A)*P(B)*(1-P(C)))

Co to jest prawdopodobieństwo?

W matematyce teoria prawdopodobieństwa zajmuje się badaniem szans. W prawdziwym życiu przewidujemy szanse w zależności od sytuacji. Jednak teoria prawdopodobieństwa zapewnia matematyczne podstawy koncepcji prawdopodobieństwa. Na przykład, jeśli w pudełku znajduje się 10 kul, w tym 7 czarnych i 3 czerwone, oraz losowo wybrana jedna kula. Wtedy prawdopodobieństwo otrzymania czerwonej kuli wynosi 3/10, a prawdopodobieństwo otrzymania czarnej kuli wynosi 7/10. Jeśli chodzi o statystyki, prawdopodobieństwo jest jak kręgosłup statystyki. Ma szerokie zastosowanie w podejmowaniu decyzji, nauce danych, badaniach trendów biznesowych itp.

Let Others Know
Facebook
Twitter
Reddit
LinkedIn
Email
WhatsApp
Copied!