Prędkość dźwięku Rozwiązanie

KROK 0: Podsumowanie wstępnych obliczeń
Formułę używana
Prędkość dźwięku = sqrt(Specyficzny współczynnik ciepła*[R-Dry-Air]*Temperatura statyczna)
a = sqrt(γ*[R-Dry-Air]*Ts)
Ta formuła używa 1 Stałe, 1 Funkcje, 3 Zmienne
Używane stałe
[R-Dry-Air] - Specific Gas Constant for Dry Air Wartość przyjęta jako 287.058 Joule / Kilogram * Kelvin
Używane funkcje
sqrt - Square root function, sqrt(Number)
Używane zmienne
Prędkość dźwięku - (Mierzone w Metr na sekundę) - Prędkość dźwięku definiuje się jako prędkość dynamicznego rozchodzenia się fal dźwiękowych.
Specyficzny współczynnik ciepła - Współczynnik ciepła właściwego to stosunek pojemności cieplnej przy stałym ciśnieniu do pojemności cieplnej przy stałej objętości przepływającego płynu dla przepływu nielepkiego i ściśliwego.
Temperatura statyczna - (Mierzone w kelwin) - Temperaturę statyczną definiuje się jako temperaturę mierzoną za pomocą termometru umieszczonego w płynie, bez wpływu na prędkość i ciśnienie płynu.
KROK 1: Zamień wejście (a) na jednostkę bazową
Specyficzny współczynnik ciepła: 1.4 --> Nie jest wymagana konwersja
Temperatura statyczna: 296 kelwin --> 296 kelwin Nie jest wymagana konwersja
KROK 2: Oceń formułę
Zastępowanie wartości wejściowych we wzorze
a = sqrt(γ*[R-Dry-Air]*Ts) --> sqrt(1.4*[R-Dry-Air]*296)
Ocenianie ... ...
a = 344.901196286705
KROK 3: Konwertuj wynik na jednostkę wyjścia
344.901196286705 Metr na sekundę --> Nie jest wymagana konwersja
OSTATNIA ODPOWIEDŹ
344.901196286705 344.9012 Metr na sekundę <-- Prędkość dźwięku
(Obliczenie zakończone za 00.004 sekund)

Kredyty

Stworzone przez Vinay Mishra
Indyjski Instytut Inżynierii Lotniczej i Technologii Informacyjnych (IIAEIT), Pune
Vinay Mishra utworzył ten kalkulator i 300+ więcej kalkulatorów!
Zweryfikowane przez Rushi Shah
KJ Somaiya College of Engineering (KJ Somaiya), Bombaj
Rushi Shah zweryfikował ten kalkulator i 200+ więcej kalkulatorów!

19 Termodynamika i równania rządzące Kalkulatory

Maksymalna wydajność pracy w cyklu Brayton
Iść Maksymalna praca wykonana w cyklu Braytona = (1005*1/Wydajność sprężarki)*Temperatura na wlocie sprężarki w Brayton*(sqrt(Temperatura na wlocie do turbiny w cyklu Braytona/Temperatura na wlocie sprężarki w Brayton*Wydajność sprężarki*Sprawność turbiny)-1)^2
Zdławione masowe natężenie przepływu przy określonym współczynniku ciepła
Iść Zdławione natężenie przepływu masowego = (Stosunek pojemności cieplnej/(sqrt(Stosunek pojemności cieplnej-1)))*((Stosunek pojemności cieplnej+1)/2)^(-((Stosunek pojemności cieplnej+1)/(2*Stosunek pojemności cieplnej-2)))
Zdławione natężenie przepływu masowego
Iść Zdławione natężenie przepływu masowego = (Masowe natężenie przepływu*sqrt(Ciepło właściwe przy stałym ciśnieniu*Temperatura))/(Obszar gardła dyszy*Ciśnienie w gardle)
Ciepło właściwe wymieszanego gazu
Iść Ciepło właściwe mieszaniny gazów = (Ciepło właściwe gazu rdzeniowego+Współczynnik obejścia*Ciepło właściwe powietrza obejściowego)/(1+Współczynnik obejścia)
Prędkość stagnacji dźwięku przy danym cieple właściwym przy stałym ciśnieniu
Iść Stagnacyjna prędkość dźwięku = sqrt((Stosunek pojemności cieplnej-1)*Ciepło właściwe przy stałym ciśnieniu*Temperatura stagnacji)
Prędkość stagnacji dźwięku
Iść Stagnacyjna prędkość dźwięku = sqrt(Stosunek pojemności cieplnej*[R]*Temperatura stagnacji)
Temperatura stagnacji
Iść Temperatura stagnacji = Temperatura statyczna+(Prędkość przepływu za dźwiękiem^2)/(2*Ciepło właściwe przy stałym ciśnieniu)
Prędkość dźwięku
Iść Prędkość dźwięku = sqrt(Specyficzny współczynnik ciepła*[R-Dry-Air]*Temperatura statyczna)
Prędkość stagnacji dźwięku przy danej entalpii stagnacji
Iść Stagnacyjna prędkość dźwięku = sqrt((Stosunek pojemności cieplnej-1)*Entalpia stagnacji)
Współczynnik pojemności cieplnej
Iść Stosunek pojemności cieplnej = Ciepło właściwe przy stałym ciśnieniu/Ciepło właściwe przy stałej objętości
Wydajność cyklu
Iść Wydajność cyklu = (Praca turbiny-Praca kompresora)/Ciepło
Energia wewnętrzna gazu doskonałego w danej temperaturze
Iść Energia wewnętrzna = Ciepło właściwe przy stałej objętości*Temperatura
Entalpia gazu doskonałego w danej temperaturze
Iść Entalpia = Ciepło właściwe przy stałym ciśnieniu*Temperatura
Entalpia stagnacji
Iść Entalpia stagnacji = Entalpia+(Prędkość przepływu płynu^2)/2
Stosunek ciśnień
Iść Stosunek ciśnień = Końcowe ciśnienie/Ciśnienie początkowe
Wydajność cyklu Joule'a
Iść Efektywność cyklu Joule'a = Wynik pracy netto/Ciepło
Wskaźnik pracy w cyklu praktycznym
Iść Stosunek pracy = 1-(Praca kompresora/Praca turbiny)
Liczba Macha
Iść Liczba Macha = Prędkość obiektu/Prędkość dźwięku
Kąt Macha
Iść Kąt Macha = asin(1/Liczba Macha)

18 Równania regulujące i fala dźwiękowa Kalkulatory

Prędkość dźwięku poniżej fali dźwiękowej
Iść Prędkość dźwięku w dół = sqrt((Specyficzny współczynnik ciepła-1)*((Prędkość przepływu przed dźwiękiem^2-Prędkość przepływu za dźwiękiem^2)/2+Prędkość dźwięku w górę strumienia^2/(Specyficzny współczynnik ciepła-1)))
Prędkość dźwięku przed falą dźwiękową
Iść Prędkość dźwięku w górę strumienia = sqrt((Specyficzny współczynnik ciepła-1)*((Prędkość przepływu za dźwiękiem^2-Prędkość przepływu przed dźwiękiem^2)/2+Prędkość dźwięku w dół^2/(Specyficzny współczynnik ciepła-1)))
Prędkość przepływu przed falą dźwiękową
Iść Prędkość przepływu przed dźwiękiem = sqrt(2*((Prędkość dźwięku w dół^2-Prędkość dźwięku w górę strumienia^2)/(Specyficzny współczynnik ciepła-1)+Prędkość przepływu za dźwiękiem^2/2))
Prędkość przepływu za falą dźwiękową
Iść Prędkość przepływu za dźwiękiem = sqrt(2*((Prędkość dźwięku w górę strumienia^2-Prędkość dźwięku w dół^2)/(Specyficzny współczynnik ciepła-1)+Prędkość przepływu przed dźwiękiem^2/2))
Stosunek stagnacji i ciśnienia statycznego
Iść Stagnacja do ciśnienia statycznego = (1+((Specyficzny współczynnik ciepła-1)/2)*Liczba Macha^2)^(Specyficzny współczynnik ciepła/(Specyficzny współczynnik ciepła-1))
Krytyczne ciśnienie
Iść Krytyczne ciśnienie = (2/(Specyficzny współczynnik ciepła+1))^(Specyficzny współczynnik ciepła/(Specyficzny współczynnik ciepła-1))*Ciśnienie stagnacji
Współczynnik stagnacji i gęstości statycznej
Iść Stagnacja do gęstości statycznej = (1+((Specyficzny współczynnik ciepła-1)/2)*Liczba Macha^2)^(1/(Specyficzny współczynnik ciepła-1))
Temperatura stagnacji
Iść Temperatura stagnacji = Temperatura statyczna+(Prędkość przepływu za dźwiękiem^2)/(2*Ciepło właściwe przy stałym ciśnieniu)
Prędkość dźwięku
Iść Prędkość dźwięku = sqrt(Specyficzny współczynnik ciepła*[R-Dry-Air]*Temperatura statyczna)
Krytyczna gęstość
Iść Gęstość krytyczna = Gęstość stagnacji*(2/(Specyficzny współczynnik ciepła+1))^(1/(Specyficzny współczynnik ciepła-1))
Formuła Mayera
Iść Specyficzna stała gazowa = Ciepło właściwe przy stałym ciśnieniu-Ciepło właściwe przy stałej objętości
Stosunek stagnacji i statycznej temperatury
Iść Stagnacja do temperatury statycznej = 1+((Specyficzny współczynnik ciepła-1)/2)*Liczba Macha^2
Temperatura krytyczna
Iść Krytyczna temperatura = (2*Temperatura stagnacji)/(Specyficzny współczynnik ciepła+1)
Ściśliwość izentropowa dla danej gęstości i prędkości dźwięku
Iść Ściśliwość izentropowa = 1/(Gęstość*Prędkość dźwięku^2)
Liczba Macha
Iść Liczba Macha = Prędkość obiektu/Prędkość dźwięku
Prędkość dźwięku przy danej zmianie izentropowej
Iść Prędkość dźwięku = sqrt(Zmiana izentropowa)
Kąt Macha
Iść Kąt Macha = asin(1/Liczba Macha)
Zmiana izentropowa w całej fali dźwiękowej
Iść Zmiana izentropowa = Prędkość dźwięku^2

Prędkość dźwięku Formułę

Prędkość dźwięku = sqrt(Specyficzny współczynnik ciepła*[R-Dry-Air]*Temperatura statyczna)
a = sqrt(γ*[R-Dry-Air]*Ts)

Jakie czynniki wpływają na prędkość dźwięku?

Istnieją dwa czynniki, które wpływają na prędkość dźwięku: gęstość medium i temperatura medium.

Let Others Know
Facebook
Twitter
Reddit
LinkedIn
Email
WhatsApp
Copied!