Coeficiente de transferência de massa da fase gasosa pela teoria de dois filmes Solução

ETAPA 0: Resumo de pré-cálculo
Fórmula Usada
Coeficiente de transferência de massa geral da fase gasosa = 1/((1/Coeficiente de transferência de massa da fase gasosa)+(Constante de Henrique/Coeficiente de Transferência de Massa da Fase Líquida))
Ky = 1/((1/ky)+(H/kx))
Esta fórmula usa 4 Variáveis
Variáveis Usadas
Coeficiente de transferência de massa geral da fase gasosa - (Medido em Toupeira / segundo metro quadrado) - O coeficiente geral de transferência de massa da fase gasosa representa a força motriz geral para ambas as fases em contato em termos de transferência de massa da fase gasosa.
Coeficiente de transferência de massa da fase gasosa - (Medido em Toupeira / segundo metro quadrado) - O coeficiente de transferência de massa da fase gasosa é uma constante de taxa de difusão que relaciona a taxa de transferência de massa, a área de transferência de massa e a mudança de concentração como força motriz.
Constante de Henrique - A Constante de Henry afirma que a quantidade de gás dissolvido em um líquido é proporcional à sua pressão parcial acima do líquido.
Coeficiente de Transferência de Massa da Fase Líquida - (Medido em Toupeira / segundo metro quadrado) - O Coeficiente de Transferência de Massa da Fase Líquida representa a força motriz para a transferência de massa no filme líquido em contato com a Fase Gasosa.
ETAPA 1: Converter entrada (s) em unidade de base
Coeficiente de transferência de massa da fase gasosa: 90 Toupeira / segundo metro quadrado --> 90 Toupeira / segundo metro quadrado Nenhuma conversão necessária
Constante de Henrique: 0.023 --> Nenhuma conversão necessária
Coeficiente de Transferência de Massa da Fase Líquida: 9.2 Toupeira / segundo metro quadrado --> 9.2 Toupeira / segundo metro quadrado Nenhuma conversão necessária
ETAPA 2: Avalie a Fórmula
Substituindo valores de entrada na fórmula
Ky = 1/((1/ky)+(H/kx)) --> 1/((1/90)+(0.023/9.2))
Avaliando ... ...
Ky = 73.469387755102
PASSO 3: Converta o Resultado em Unidade de Saída
73.469387755102 Toupeira / segundo metro quadrado --> Nenhuma conversão necessária
RESPOSTA FINAL
73.469387755102 73.46939 Toupeira / segundo metro quadrado <-- Coeficiente de transferência de massa geral da fase gasosa
(Cálculo concluído em 00.004 segundos)

Créditos

Criado por Vaibhav Mishra
Faculdade de Engenharia DJ Sanghvi (DJSCE), Mumbai
Vaibhav Mishra criou esta calculadora e mais 300+ calculadoras!
Verificado por Soupayan Banerjee
Universidade Nacional de Ciências Judiciárias (NUJS), Calcutá
Soupayan Banerjee verificou esta calculadora e mais 800+ calculadoras!

20 Teorias de transferência de massa Calculadoras

Coeficiente de Transferência de Massa da Fase Líquida pela Teoria de Dois Filmes
Vai Coeficiente geral de transferência de massa da fase líquida = 1/((1/(Coeficiente de transferência de massa da fase gasosa*Constante de Henrique))+(1/Coeficiente de Transferência de Massa da Fase Líquida))
Coeficiente de transferência de massa da fase gasosa pela teoria de dois filmes
Vai Coeficiente de transferência de massa geral da fase gasosa = 1/((1/Coeficiente de transferência de massa da fase gasosa)+(Constante de Henrique/Coeficiente de Transferência de Massa da Fase Líquida))
Coeficiente de Transferência de Massa Instantânea pela Teoria da Penetração
Vai Coeficiente de transferência de massa convectiva instantânea = sqrt(Coeficiente de Difusão (DAB)/(pi*Tempo de contato instantâneo))
Coeficiente Médio de Transferência de Massa pela Teoria da Penetração
Vai Coeficiente Convectivo Médio de Transferência de Massa = 2*sqrt(Coeficiente de Difusão (DAB)/(pi*Tempo médio de contato))
Resistência fracionária oferecida pela fase líquida
Vai Resistência fracionária oferecida pela fase líquida = (1/Coeficiente de Transferência de Massa da Fase Líquida)/(1/Coeficiente geral de transferência de massa da fase líquida)
Resistência fracionária oferecida pela fase gasosa
Vai Resistência fracionária oferecida pela fase gasosa = (1/Coeficiente de transferência de massa da fase gasosa)/(1/Coeficiente de transferência de massa geral da fase gasosa)
Coeficiente geral de transferência de massa da fase líquida usando resistência fracionária por fase líquida
Vai Coeficiente geral de transferência de massa da fase líquida = Coeficiente de Transferência de Massa da Fase Líquida*Resistência fracionária oferecida pela fase líquida
Coeficiente de Transferência de Massa da Fase Líquida usando Resistência Fracionária por Fase Líquida
Vai Coeficiente de Transferência de Massa da Fase Líquida = Coeficiente geral de transferência de massa da fase líquida/Resistência fracionária oferecida pela fase líquida
Coeficiente geral de transferência de massa da fase gasosa usando resistência fracionária por fase gasosa
Vai Coeficiente de transferência de massa geral da fase gasosa = Coeficiente de transferência de massa da fase gasosa*Resistência fracionária oferecida pela fase gasosa
Coeficiente de transferência de massa da fase gasosa usando resistência fracionária por fase gasosa
Vai Coeficiente de transferência de massa da fase gasosa = Coeficiente de transferência de massa geral da fase gasosa/Resistência fracionária oferecida pela fase gasosa
Difusividade por tempo de contato instantâneo na teoria da penetração
Vai Coeficiente de Difusão (DAB) = (Tempo de contato instantâneo*(Coeficiente de transferência de massa convectiva instantânea^2)*pi)
Tempo de contato instantâneo pela teoria da penetração
Vai Tempo de contato instantâneo = (Coeficiente de Difusão (DAB))/((Coeficiente de transferência de massa convectiva instantânea^2)*pi)
Difusividade por tempo médio de contato na teoria da penetração
Vai Coeficiente de Difusão (DAB) = (Tempo médio de contato*(Coeficiente Convectivo Médio de Transferência de Massa^2)*pi)/4
Tempo médio de contato por teoria de penetração
Vai Tempo médio de contato = (4*Coeficiente de Difusão (DAB))/((Coeficiente Convectivo Médio de Transferência de Massa^2)*pi)
Coeficiente de Transferência de Massa pela Teoria da Renovação de Superfície
Vai Coeficiente de Transferência de Massa Convectiva = sqrt(Coeficiente de Difusão (DAB)*Taxa de renovação da superfície)
Difusividade pela Teoria da Renovação de Superfície
Vai Coeficiente de Difusão (DAB) = (Coeficiente de Transferência de Massa Convectiva^2)/ Taxa de renovação da superfície
Taxa de Renovação de Superfície por Teoria de Renovação de Superfície
Vai Taxa de renovação da superfície = (Coeficiente de Transferência de Massa Convectiva^2)/Coeficiente de Difusão (DAB)
Coeficiente de Transferência de Massa pela Teoria do Cinema
Vai Coeficiente de Transferência de Massa Convectiva = Coeficiente de Difusão (DAB)/Espessura do filme
Espessura do Filme por Teoria do Filme
Vai Espessura do filme = Coeficiente de Difusão (DAB)/Coeficiente de Transferência de Massa Convectiva
Difusividade pela Teoria do Cinema
Vai Coeficiente de Difusão (DAB) = Coeficiente de Transferência de Massa Convectiva*Espessura do filme

25 Fórmulas importantes no coeficiente de transferência de massa, força motriz e teorias Calculadoras

Coeficiente de Transferência de Massa Convectiva através da Interface de Gás Líquido
Vai Coeficiente de Transferência de Massa Convectiva = (Coeficiente de Transferência de Massa do Meio 1*Coeficiente de Transferência de Massa do Meio 2*Constante de Henrique)/((Coeficiente de Transferência de Massa do Meio 1*Constante de Henrique)+(Coeficiente de Transferência de Massa do Meio 2))
Diferença de pressão parcial média logarítmica
Vai Diferença de pressão parcial média logarítmica = (Pressão Parcial do Componente B na Mistura 2-Pressão Parcial do Componente B na Mistura 1)/(ln(Pressão Parcial do Componente B na Mistura 2/Pressão Parcial do Componente B na Mistura 1))
Média logarítmica da diferença de concentração
Vai Média Logarítmica da Diferença de Concentração = (Concentração do Componente B na Mistura 2-Concentração do Componente B na Mistura 1)/ln(Concentração do Componente B na Mistura 2/Concentração do Componente B na Mistura 1)
Coeficiente de Transferência de Massa da Fase Líquida pela Teoria de Dois Filmes
Vai Coeficiente geral de transferência de massa da fase líquida = 1/((1/(Coeficiente de transferência de massa da fase gasosa*Constante de Henrique))+(1/Coeficiente de Transferência de Massa da Fase Líquida))
Coeficiente de transferência de massa da fase gasosa pela teoria de dois filmes
Vai Coeficiente de transferência de massa geral da fase gasosa = 1/((1/Coeficiente de transferência de massa da fase gasosa)+(Constante de Henrique/Coeficiente de Transferência de Massa da Fase Líquida))
Coeficiente de Transferência de Massa Convectiva
Vai Coeficiente de Transferência de Massa Convectiva = Fluxo de Massa do Componente de Difusão A/(Concentração de Massa do Componente A na Mistura 1-Concentração de Massa do Componente A na Mistura 2)
Coeficiente de transferência de massa convectiva para transferência simultânea de calor e massa
Vai Coeficiente de Transferência de Massa Convectiva = Coeficiente de transferência de calor/(Calor específico*Densidade do Líquido*(Número Lewis^0.67))
Coeficiente de transferência de calor para transferência simultânea de calor e massa
Vai Coeficiente de transferência de calor = Coeficiente de Transferência de Massa Convectiva*Densidade do Líquido*Calor específico*(Número Lewis^0.67)
Coeficiente Médio de Transferência de Massa pela Teoria da Penetração
Vai Coeficiente Convectivo Médio de Transferência de Massa = 2*sqrt(Coeficiente de Difusão (DAB)/(pi*Tempo médio de contato))
Resistência fracionária oferecida pela fase líquida
Vai Resistência fracionária oferecida pela fase líquida = (1/Coeficiente de Transferência de Massa da Fase Líquida)/(1/Coeficiente geral de transferência de massa da fase líquida)
Coeficiente de transferência de massa convectiva de placa plana em fluxo turbulento laminar combinado
Vai Coeficiente de Transferência de Massa Convectiva = (0.0286*Velocidade de transmissão gratuita)/((Número de Reynolds^0.2)*(Número Schmidt^0.67))
Coeficiente de transferência de massa convectiva do fluxo laminar de placa plana usando o número de Reynolds
Vai Coeficiente de Transferência de Massa Convectiva = (Velocidade de transmissão gratuita*0.322)/((Número de Reynolds^0.5)*(Número Schmidt^0.67))
Resistência fracionária oferecida pela fase gasosa
Vai Resistência fracionária oferecida pela fase gasosa = (1/Coeficiente de transferência de massa da fase gasosa)/(1/Coeficiente de transferência de massa geral da fase gasosa)
Coeficiente de Transferência de Massa da Fase Líquida usando Resistência Fracionária por Fase Líquida
Vai Coeficiente de Transferência de Massa da Fase Líquida = Coeficiente geral de transferência de massa da fase líquida/Resistência fracionária oferecida pela fase líquida
Coeficiente de transferência de massa convectiva de fluxo laminar de placa plana usando coeficiente de arrasto
Vai Coeficiente de Transferência de Massa Convectiva = (coeficiente de arrasto*Velocidade de transmissão gratuita)/(2*(Número Schmidt^0.67))
Coeficiente de transferência de massa da fase gasosa usando resistência fracionária por fase gasosa
Vai Coeficiente de transferência de massa da fase gasosa = Coeficiente de transferência de massa geral da fase gasosa/Resistência fracionária oferecida pela fase gasosa
Coeficiente de transferência de massa convectiva de fluxo laminar de placa plana usando fator de atrito
Vai Coeficiente de Transferência de Massa Convectiva = (Fator de atrito*Velocidade de transmissão gratuita)/(8*(Número Schmidt^0.67))
Espessura da camada limite de transferência de massa da placa plana em fluxo laminar
Vai Espessura da camada limite de transferência de massa em x = Espessura da Camada Limite Hidrodinâmica*(Número Schmidt^(-0.333))
Número Stanton de Transferência em Massa
Vai Número Stanton de Transferência em Massa = Coeficiente de Transferência de Massa Convectiva/Velocidade de transmissão gratuita
Número médio de Sherwood de fluxo laminar e turbulento combinado
Vai Número médio de Sherwood = ((0.037*(Número de Reynolds^0.8))-871)*(Número Schmidt^0.333)
Número Sherwood Local para Placa Plana em Fluxo Turbulento
Vai Número local de Sherwood = 0.0296*(Número local de Reynolds^0.8)*(Número Schmidt^0.333)
Número local de Sherwood para placa plana em fluxo laminar
Vai Número local de Sherwood = 0.332*(Número local de Reynolds^0.5)*(Número Schmidt^0.333)
Número médio de Sherwood de fluxo turbulento interno
Vai Número médio de Sherwood = 0.023*(Número de Reynolds^0.83)*(Número Schmidt^0.44)
Número Sherwood para placa plana em fluxo laminar
Vai Número médio de Sherwood = 0.664*(Número de Reynolds^0.5)*(Número Schmidt^0.333)
Número médio de Sherwood de fluxo turbulento de placa plana
Vai Número médio de Sherwood = 0.037*(Número de Reynolds^0.8)

Coeficiente de transferência de massa da fase gasosa pela teoria de dois filmes Fórmula

Coeficiente de transferência de massa geral da fase gasosa = 1/((1/Coeficiente de transferência de massa da fase gasosa)+(Constante de Henrique/Coeficiente de Transferência de Massa da Fase Líquida))
Ky = 1/((1/ky)+(H/kx))
Let Others Know
Facebook
Twitter
Reddit
LinkedIn
Email
WhatsApp
Copied!