Velocidade de Decantação Terminal de Partícula Única Solução

ETAPA 0: Resumo de pré-cálculo
Fórmula Usada
Velocidade terminal de partícula única = Velocidade de Decantação do Grupo de Partículas/(Fração de vazio)^Índice Richardsonb Zaki
Vt = V/()^n
Esta fórmula usa 4 Variáveis
Variáveis Usadas
Velocidade terminal de partícula única - (Medido em Metro por segundo) - A velocidade terminal de uma única partícula é a velocidade resultante da ação das forças de aceleração e arrasto.
Velocidade de Decantação do Grupo de Partículas - (Medido em Metro por segundo) - A Velocidade de Decantação do Grupo de Partículas é a velocidade com que as partículas se acomodam.
Fração de vazio - Fração vazia a fração do volume do canal que é ocupada pela fase gasosa.
Índice Richardsonb Zaki - Índice Richardsonb Zaki é a concentração volumétrica fracionária de sólido.
ETAPA 1: Converter entrada (s) em unidade de base
Velocidade de Decantação do Grupo de Partículas: 0.1 Metro por segundo --> 0.1 Metro por segundo Nenhuma conversão necessária
Fração de vazio: 0.75 --> Nenhuma conversão necessária
Índice Richardsonb Zaki: 2.39 --> Nenhuma conversão necessária
ETAPA 2: Avalie a Fórmula
Substituindo valores de entrada na fórmula
Vt = V/(∈)^n --> 0.1/(0.75)^2.39
Avaliando ... ...
Vt = 0.198885710202311
PASSO 3: Converta o Resultado em Unidade de Saída
0.198885710202311 Metro por segundo --> Nenhuma conversão necessária
RESPOSTA FINAL
0.198885710202311 0.198886 Metro por segundo <-- Velocidade terminal de partícula única
(Cálculo concluído em 00.004 segundos)

Créditos

Criado por Qazi Muneeb
NIT Srinagar (NIT SRI), Srinagar, Caxemira
Qazi Muneeb criou esta calculadora e mais 25+ calculadoras!
Verificado por Soupayan Banerjee
Universidade Nacional de Ciências Judiciárias (NUJS), Calcutá
Soupayan Banerjee verificou esta calculadora e mais 800+ calculadoras!

3 Separação de Tamanho Calculadoras

Área Projetada do Corpo Sólido
Vai Área projetada do corpo de partícula sólida = 2*(Força de arrasto)/(coeficiente de arrasto*Densidade do Líquido*(Velocidade do Líquido)^(2))
Velocidade de Decantação Terminal de Partícula Única
Vai Velocidade terminal de partícula única = Velocidade de Decantação do Grupo de Partículas/(Fração de vazio)^Índice Richardsonb Zaki
Velocidade de liquidação do grupo de partículas
Vai Velocidade de Decantação do Grupo de Partículas = Velocidade terminal de partícula única*(Fração de vazio)^Índice Richardsonb Zaki

19 Fórmulas importantes nas leis de redução de tamanho Calculadoras

Área do produto dada eficiência de trituração
Vai Área de Produto = ((Eficiência de Esmagamento*Energia Absorvida pelo Material)/(Energia de Superfície por Unidade de Área*Comprimento))+Área de Alimentação
Metade das lacunas entre rolos
Vai Metade do espaço entre os rolos = ((cos(Meio Ângulo de Nip))*(Raio de Alimentação+Raio dos Rolos de Esmagamento))-Raio dos Rolos de Esmagamento
Raio de alimentação no britador de rolo liso
Vai Raio de Alimentação = (Raio dos Rolos de Esmagamento+Metade do espaço entre os rolos)/cos(Meio Ângulo de Nip)-Raio dos Rolos de Esmagamento
Área de alimentação dada a eficiência de trituração
Vai Área de Alimentação = Área de Produto-((Eficiência de Esmagamento*Energia absorvida por unidade de massa de alimentação)/(Energia de Superfície por Unidade de Área))
Energia absorvida pelo material durante o esmagamento
Vai Energia Absorvida pelo Material = (Energia de Superfície por Unidade de Área*(Área de Produto-Área de Alimentação))/(Eficiência de Esmagamento)
Velocidade Crítica do Moinho de Bolas Cônico
Vai Velocidade Crítica do Moinho de Bolas Cônicas = 1/(2*pi)*sqrt( [g]/(Raio do Moinho de Bolas-raio da bola))
Eficiência de Esmagamento
Vai Eficiência de Esmagamento = (Energia de Superfície por Unidade de Área*(Área de Produto-Área de Alimentação))/Energia Absorvida pelo Material
Área Projetada do Corpo Sólido
Vai Área projetada do corpo de partícula sólida = 2*(Força de arrasto)/(coeficiente de arrasto*Densidade do Líquido*(Velocidade do Líquido)^(2))
Raio do moinho de bolas
Vai Raio do Moinho de Bolas = ([g]/(2*pi*Velocidade Crítica do Moinho de Bolas Cônicas)^2)+raio da bola
Velocidade de Decantação Terminal de Partícula Única
Vai Velocidade terminal de partícula única = Velocidade de Decantação do Grupo de Partículas/(Fração de vazio)^Índice Richardsonb Zaki
Consumo de energia enquanto o moinho está vazio
Vai Consumo de energia enquanto o moinho está vazio = Consumo de energia por moinho durante a britagem-Consumo de energia apenas para britagem
Consumo de energia apenas para britagem
Vai Consumo de energia apenas para britagem = Consumo de energia por moinho durante a britagem-Consumo de energia enquanto o moinho está vazio
Eficiência mecânica dada a energia alimentada ao sistema
Vai Eficiência Mecânica em Termos de Energia Fed = Energia absorvida por unidade de massa de alimentação/Energia alimentada à máquina
Raio dos Rolos de Esmagamento
Vai Raio dos Rolos de Esmagamento = (Diâmetro máximo da partícula cortada por rolos-Metade do espaço entre os rolos)/0.04
Diâmetro máximo de partículas cortadas por rolos
Vai Diâmetro máximo da partícula cortada por rolos = 0.04*Raio dos Rolos de Esmagamento+Metade do espaço entre os rolos
Trabalho necessário para Redução de Partículas
Vai Trabalho Necessário para Redução de Partículas = Potência exigida pela máquina/Taxa de alimentação para a máquina
Diâmetro de Alimentação baseado na Lei de Redução
Vai Diâmetro de alimentação = Taxa de redução*Diâmetro do produto
Diâmetro do produto baseado na taxa de redução
Vai Diâmetro do produto = Diâmetro de alimentação/Taxa de redução
Taxa de redução
Vai Taxa de redução = Diâmetro de alimentação/Diâmetro do produto

21 Fórmulas Básicas de Operações Mecânicas Calculadoras

Esfericidade da Partícula Cuboidal
Vai Esfericidade da Partícula Cuboidal = ((((Comprimento*Largura*Altura)*(0.75/pi))^(1/3)^2)*4*pi)/(2*(Comprimento*Largura+Largura*Altura+Altura*Comprimento))
Esfericidade da Partícula Cilíndrica
Vai Esfericidade da Partícula Cilíndrica = (((((Raio do Cilindro)^2*Altura do Cilindro*3/4)^(1/3))^2)*4*pi)/(2*pi*Raio do Cilindro*(Raio do Cilindro+Altura do Cilindro))
Gradiente de pressão usando a equação de Kozeny Carman
Vai Gradiente de pressão = (150*Viscosidade dinamica*(1-Porosidade)^2*Velocidade)/((Esfericidade da Partícula)^2*(Diâmetro Equivalente)^2*(Porosidade)^3)
Área Projetada do Corpo Sólido
Vai Área projetada do corpo de partícula sólida = 2*(Força de arrasto)/(coeficiente de arrasto*Densidade do Líquido*(Velocidade do Líquido)^(2))
Área de Superfície Total de Partículas Usando Especicidade
Vai Área de Superfície Total de Partículas = Massa*6/(Esfericidade da Partícula*Densidade de Partícula*Diâmetro médio aritmético)
Velocidade de Decantação Terminal de Partícula Única
Vai Velocidade terminal de partícula única = Velocidade de Decantação do Grupo de Partículas/(Fração de vazio)^Índice Richardsonb Zaki
Energia necessária para esmagar materiais grosseiros de acordo com a Lei de Bond
Vai Energia por unidade de massa de ração = Índice de trabalho*((100/Diâmetro do produto)^0.5-(100/Diâmetro de alimentação)^0.5)
Esfericidade da Partícula
Vai Esfericidade da Partícula = (6*Volume de uma partícula esférica)/(Área de Superfície da Partícula*Diâmetro Equivalente)
Número total de partículas na mistura
Vai Número Total de Partículas na Mistura = Massa Total da Mistura/(Densidade de Partícula* Volume de uma partícula)
Característica do material usando o ângulo de atrito
Vai Característica do Material = (1-sin(Ângulo de Atrito))/(1+sin(Ângulo de Atrito))
Número de Partículas
Vai Número de Partículas = Massa de Mistura/(Densidade de uma partícula*Volume de Partícula Esférica)
Fração do tempo de ciclo usado para a formação do bolo
Vai Fração do tempo de ciclo usado para formação de bolo = Tempo Necessário para a Formação do Bolo/Tempo total do ciclo
Tempo necessário para a formação do bolo
Vai Tempo Necessário para a Formação do Bolo = Fração do tempo de ciclo usado para formação de bolo*Tempo total do ciclo
Área de Superfície Específica da Mistura
Vai Área de superfície específica da mistura = Área de Superfície Total/Massa Total da Mistura
Diâmetro médio de massa
Vai Diâmetro médio de massa = (Fração de massa*Tamanho das partículas presentes em fração)
Diâmetro Médio Sauter
Vai Diâmetro médio de Sauter = (6*Volume de Partícula)/(Área de Superfície da Partícula)
Área de superfície total de partículas
Vai Área de Superfície = Área de superfície de uma partícula*Número de Partículas
Porosidade ou Fração de Vazio
Vai Porosidade ou Fração Vazia = Volume de vazios na cama/Volume Total da Cama
Pressão aplicada em termos de coeficiente de fluidez para sólidos
Vai Pressão Aplicada = Pressão Normal/Coeficiente de fluidez
Coeficiente de Escoabilidade de Sólidos
Vai Coeficiente de fluidez = Pressão Normal/Pressão Aplicada
Fator de forma da superfície
Vai Fator de forma de superfície = 1/Esfericidade da Partícula

Velocidade de Decantação Terminal de Partícula Única Fórmula

Velocidade terminal de partícula única = Velocidade de Decantação do Grupo de Partículas/(Fração de vazio)^Índice Richardsonb Zaki
Vt = V/()^n
Let Others Know
Facebook
Twitter
Reddit
LinkedIn
Email
WhatsApp
Copied!