Resistência Térmica para Condução na Parede do Tubo Solução

ETAPA 0: Resumo de pré-cálculo
Fórmula Usada
Resistência térmica = (ln(Raio Externo do Cilindro/Raio Interno do Cilindro))/(2*pi*Condutividade térmica*Comprimento do Cilindro)
Rth = (ln(r2/r1))/(2*pi*k*l)
Esta fórmula usa 1 Constantes, 1 Funções, 5 Variáveis
Constantes Usadas
pi - Archimedes-Konstante Valor considerado como 3.14159265358979323846264338327950288
Funções usadas
ln - Der natürliche Logarithmus, auch Logarithmus zur Basis e genannt, ist die Umkehrfunktion der natürlichen Exponentialfunktion., ln(Number)
Variáveis Usadas
Resistência térmica - (Medido em Kelvin/watt) - A resistência térmica é uma propriedade de calor e uma medição de uma diferença de temperatura pela qual um objeto ou material resiste a um fluxo de calor.
Raio Externo do Cilindro - (Medido em Metro) - O Raio Externo do Cilindro é uma linha reta do centro até a base do Cilindro até a superfície externa do Cilindro.
Raio Interno do Cilindro - (Medido em Metro) - O Raio Interno do Cilindro é uma linha reta do centro até a base do Cilindro até a superfície interna do Cilindro.
Condutividade térmica - (Medido em Watt por Metro por K) - A condutividade térmica é a taxa de passagem de calor através do material especificado, expressa como a quantidade de fluxos de calor por unidade de tempo através de uma unidade de área com um gradiente de temperatura de um grau por unidade de distância.
Comprimento do Cilindro - (Medido em Metro) - O comprimento do cilindro é a altura vertical do cilindro.
ETAPA 1: Converter entrada (s) em unidade de base
Raio Externo do Cilindro: 12.5 Metro --> 12.5 Metro Nenhuma conversão necessária
Raio Interno do Cilindro: 2.5 Metro --> 2.5 Metro Nenhuma conversão necessária
Condutividade térmica: 2.15 Watt por Metro por K --> 2.15 Watt por Metro por K Nenhuma conversão necessária
Comprimento do Cilindro: 6.1 Metro --> 6.1 Metro Nenhuma conversão necessária
ETAPA 2: Avalie a Fórmula
Substituindo valores de entrada na fórmula
Rth = (ln(r2/r1))/(2*pi*k*l) --> (ln(12.5/2.5))/(2*pi*2.15*6.1)
Avaliando ... ...
Rth = 0.0195310712438725
PASSO 3: Converta o Resultado em Unidade de Saída
0.0195310712438725 Kelvin/watt --> Nenhuma conversão necessária
RESPOSTA FINAL
0.0195310712438725 0.019531 Kelvin/watt <-- Resistência térmica
(Cálculo concluído em 00.004 segundos)

Créditos

Criado por Ayush gupta
Escola Universitária de Tecnologia Química-USCT (GGSIPU), Nova Delhi
Ayush gupta criou esta calculadora e mais 300+ calculadoras!
Verificado por Soupayan Banerjee
Universidade Nacional de Ciências Judiciárias (NUJS), Calcutá
Soupayan Banerjee verificou esta calculadora e mais 800+ calculadoras!

8 Resistência térmica Calculadoras

Resistência Térmica para Condução na Parede do Tubo
Vai Resistência térmica = (ln(Raio Externo do Cilindro/Raio Interno do Cilindro))/(2*pi*Condutividade térmica*Comprimento do Cilindro)
Coeficiente de transferência de calor interno dada a resistência térmica interna
Vai Coeficiente de transferência de calor por convecção interna = 1/(Área Interna*Resistência térmica)
Coeficiente de Transferência de Calor Externo dada a Resistência Térmica
Vai Coeficiente de Transferência de Calor por Convecção Externa = 1/(Resistência térmica*Área Externa)
Área Interna dada Resistência Térmica para Superfície Interna
Vai Área Interna = 1/(Coeficiente de transferência de calor por convecção interna*Resistência térmica)
Resistência Térmica para Convecção na Superfície Externa
Vai Resistência térmica = 1/(Coeficiente de Transferência de Calor por Convecção Externa*Área Externa)
Resistência Térmica para Convecção na Superfície Interna
Vai Resistência térmica = 1/(Área Interna*Coeficiente de transferência de calor por convecção interna)
Área Externa com Resistência Térmica Externa
Vai Área Externa = 1/(Coeficiente de Transferência de Calor por Convecção Externa*Resistência térmica)
Resistência Térmica Total
Vai Resistência Térmica Total = 1/(Coeficiente global de transferência de calor*Área)

20 Transferência de calor de superfícies estendidas (aletas), espessura crítica de isolamento e resistência térmica Calculadoras

Dissipação de Calor da Aleta Perdendo Calor na Ponta Final
Vai Taxa de Transferência de Calor Aleta = (sqrt(Perímetro da Aleta*Coeficiente de transferência de calor*Condutividade Térmica da Aleta*Área de seção transversal))*(Temperatura da superfície-Temperatura ambiente)*((tanh((sqrt((Perímetro da Aleta*Coeficiente de transferência de calor)/(Condutividade Térmica da Aleta*Área de seção transversal)))*Comprimento da aleta)+(Coeficiente de transferência de calor)/(Condutividade Térmica da Aleta*(sqrt(Perímetro da Aleta*Coeficiente de transferência de calor/Condutividade Térmica da Aleta*Área de seção transversal)))))/(1+tanh((sqrt((Perímetro da Aleta*Coeficiente de transferência de calor)/(Condutividade Térmica da Aleta*Área de seção transversal)))*Comprimento da aleta*(Coeficiente de transferência de calor)/(Condutividade Térmica da Aleta*(sqrt((Perímetro da Aleta*Coeficiente de transferência de calor)/(Condutividade Térmica da Aleta*Área de seção transversal))))))
Dissipação de calor da aleta isolada na ponta final
Vai Taxa de Transferência de Calor Aleta = (sqrt((Perímetro da Aleta*Coeficiente de transferência de calor*Condutividade Térmica da Aleta*Área de seção transversal)))*(Temperatura da superfície-Temperatura ambiente)*tanh((sqrt((Perímetro da Aleta*Coeficiente de transferência de calor)/(Condutividade Térmica da Aleta*Área de seção transversal)))*Comprimento da aleta)
Dissipação de calor da barbatana infinitamente longa
Vai Taxa de Transferência de Calor Aleta = ((Perímetro da Aleta*Coeficiente de transferência de calor*Condutividade Térmica da Aleta*Área de seção transversal)^0.5)*(Temperatura da superfície-Temperatura ambiente)
Resistência Térmica para Condução na Parede do Tubo
Vai Resistência térmica = (ln(Raio Externo do Cilindro/Raio Interno do Cilindro))/(2*pi*Condutividade térmica*Comprimento do Cilindro)
Transferência de calor nas aletas dada a eficiência da aleta
Vai Taxa de Transferência de Calor Aleta = Coeficiente global de transferência de calor*Área*Eficiência das Aletas*Diferença geral na temperatura
Lei de resfriamento de Newton
Vai Fluxo de calor = Coeficiente de transferência de calor*(Temperatura da superfície-Temperatura do Fluido Característico)
Número de Biot usando o comprimento da característica
Vai Número Biot = (Coeficiente de transferência de calor*Comprimento característico)/(Condutividade Térmica da Aleta)
Raio Crítico de Isolamento da Esfera Oca
Vai Raio Crítico de Isolamento = 2*Condutividade Térmica do Isolamento/Coeficiente de Transferência de Calor por Convecção Externa
Raio Crítico de Isolamento do Cilindro
Vai Raio Crítico de Isolamento = Condutividade Térmica do Isolamento/Coeficiente de Transferência de Calor por Convecção Externa
Comprimento de correção para aleta cilíndrica com ponta não adiabática
Vai Comprimento de correção para aleta cilíndrica = Comprimento da aleta+(Diâmetro da aleta cilíndrica/4)
Comprimento de correção para aleta retangular fina com ponta não adiabática
Vai Comprimento de correção para aleta retangular fina = Comprimento da aleta+(Espessura da barbatana/2)
Coeficiente de transferência de calor interno dada a resistência térmica interna
Vai Coeficiente de transferência de calor por convecção interna = 1/(Área Interna*Resistência térmica)
Coeficiente de Transferência de Calor Externo dada a Resistência Térmica
Vai Coeficiente de Transferência de Calor por Convecção Externa = 1/(Resistência térmica*Área Externa)
Área Interna dada Resistência Térmica para Superfície Interna
Vai Área Interna = 1/(Coeficiente de transferência de calor por convecção interna*Resistência térmica)
Resistência Térmica para Convecção na Superfície Interna
Vai Resistência térmica = 1/(Área Interna*Coeficiente de transferência de calor por convecção interna)
Resistência Térmica para Convecção na Superfície Externa
Vai Resistência térmica = 1/(Coeficiente de Transferência de Calor por Convecção Externa*Área Externa)
Área Externa com Resistência Térmica Externa
Vai Área Externa = 1/(Coeficiente de Transferência de Calor por Convecção Externa*Resistência térmica)
Comprimento de correção para aleta quadrada com ponta não adiabática
Vai Comprimento de correção para aleta quadrada = Comprimento da aleta+(Largura da aleta/4)
Resistência Térmica Total
Vai Resistência Térmica Total = 1/(Coeficiente global de transferência de calor*Área)
Geração Volumétrica de Calor em Condutor Elétrico de Transporte de Corrente
Vai Geração Volumétrica de Calor = (Densidade de corrente elétrica^2)*Resistividade

Resistência Térmica para Condução na Parede do Tubo Fórmula

Resistência térmica = (ln(Raio Externo do Cilindro/Raio Interno do Cilindro))/(2*pi*Condutividade térmica*Comprimento do Cilindro)
Rth = (ln(r2/r1))/(2*pi*k*l)
Let Others Know
Facebook
Twitter
Reddit
LinkedIn
Email
WhatsApp
Copied!